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Chapter 1

Maximum Principles

1.1 Second Order Elliptic Differential Equations and Some

Examples

There are already tons of introductions on second order elliptic equations, and here we

simply list the definitions and several examples.

Definition 1.1. Suppose Q@ C R™ is an open and connected domain. x = (x1, -+ ,T,) € €2,

and we define an operator

Lu = Z aij(x)aiu_ + sz(x)ggz + e(x)u (1.1.1)

with u a proper real-valued function on Q, and (a;;(x)), .., s symmetric.

Definition 1.2. We say the operator L elliptic on Q if (a;;(x)), ., is positive definite for

arbitrary x € Q. We also say that L is strictly elliptic if there exists a positive lower bound

for the eigenvalues.

Definition 1.3. An elliptic equation is one of the form
Lu(z) = f(z), z € Q, (1.1.2)

where f is given, and u is unknown. wu is called an upper solution to (I13) if Lu > f

almost everywhere, and in the reverse case it is called a lower solution.
EXAMPLES:

1. (Lower Harmonic Function) Let f(z) = w(z,y) + iv(z,y) be an analytic function on
Q C R2, then we have by Cauchy-Riemann Equation we see u, v satisfy Au = 0, Av = 0,
that is, they are harmonic. Now, the absolute value of f becomes a lower harmonic

function, which is obtained by a direct computation.
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2. (Electrostatics) Let f(z) be a function that represents the density of the electric mate-

rials, then the solution to the Cauchy equation
—Au=f

gives the static electric field the materials produce, where the operator A = 3" a‘% will

be called Laplacian throughout the note.

3. (Mean Curvature) By mean curvature we mean half of the trace of the metric tensor of

a surface. We now consider the surface z = u(x,y), (z,y) € 2. Computations show that

Vu

1+ Vul?

surface that minimizes area locally if and only if its mean curvature vanishes, i.e.

its mean curvature is H(z,y) = %V : . In the theory of minimal surfaces, a

\Y
V- 71‘ =0
V14 |Vul?
This is equation gives
(1+ ui)um + (14 u2)uyy — 2uytyty, = 0.
And it can be shown that the thermal tensor
1+u2 —u,
+ Uy U Uy o1
—uyu, 1+u?
4. (Steady States of Heat Equation) Let u(x,t) be the temperature at point x € R", at
time ¢. Then the heat energy density will be E(x,t) = cpu(x,t), with ¢ the specific heat

and p the density of mass. Suppose ¢, p are constants, and {2 a domain the material

possesses. Then the rate of change of total heat energy in Q2 will be modelled by
d .
— [ E(x,t)dx = rate in — rate out @
dt Jo

To formulate @, we assume that N is the unit outer normal vector field on the surface
S = 09, V the heat transfer velocity vector field. Then the net rate at which mass/heat

crosses surface S in the direction N is
/ pV - NdS,
s
where F = pV is called the fluz, and so
S — / F - NdS.
s

Now, what is F? According to Fourier’s Law, F should have angle less than 90° with
—Vu, i.e. the flux should be approximately in the diffusing direction of the temperature.
This observation (although not mathematical) forces F = A(x,t)(—Vu(x,t)), with A

symmetric and positive definite. It is of wide interest to study this thermal tensor
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A, which actually represents various heat-transfer properties of different matters. A
rough classification of such matrices is to call A = kI, k € R, isotropic, and otherwise

anisotropic.

With the integral equation established successfully, we may deduce by divergence theo-

rem

d/E(x,t)dx:—/ AVu - NdS
dt Jo 00
:/V~(AVU) dx,
Q

where €2 can be replaced by any smooth sub-region. Thus the integrands should satisfy

the equation
dE(x,t)

pra V- (AVu)

or
cpuy =V - (AVu).

The steady state of the above heat equation is a solution u that is independent of time
t, i.e.

-V . (AVu) =0.

5. (Irrotational and Incompressible fluid) Let V be a velocity vector field in a simply
connected domain . “Irrotational” means that V = V¢ for some function ¢, and

“Incompressible” means that divV = 0. These two conditions imply that A¢ = 0.

1.2 Weak Maximum Principle for Second Order Elliptic

Differential Equations

Baby Example: Lu = u” on the interval (a,b). Suppose u € C?(a,b)NC°[a, b] satisfying
u” > 0 in the interior, then maxp, ) u = max, py u.

Question: Is it still true for the case Lu > 0, in €, that
max u = maxu !
Q a0

Theorem 1.2.1. Weak Maximum Principle (¢ = 0) Suppose L is strictly elliptic on a
bounded domain Q and u € C?*(Q) N C°(Q) satisfies Lu > 0 in Q, then

maxu = maxu,
Q l9)

provided b;’s are bounded on €.

1EBf. Special case: Lu > 0 in Q

Since u is continuous on €, then there should be some x( € € such that u(x) = maxq u.
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Case 1. x¢ € 09, then the proof is done;

Case 2. x¢ € Q implies that Vu(xg) = 0. By considering the Hessian matrix evaluated at xg,

we see
U1 Uz -+ Ulin
9 U21 U2 -+  U2p
Dmu(xo) = =< 07
Un1 Un2 e Unn

by maximality. Observing that
0 < Lu(xg) = asjuij(xo0) + biui(x0) = aijui; = Tr(AB), with B = D2u(x,),
we take orthogonal matrix P such that
PTAP = diag{\;},
where \;’s are eigenvalues of A and \; > )\g for all 1 <7 < n.
Now, we have
Tr(AB) = Tr(PTABP)
=Tr(PTAPPTBP)
Tr( wg( i)B)

I
&
S

IN

since B < 0, and so is B, which implies b;; < 0. Thus the contradiction is established.

General case: For ¢ > 0, we define

Then we have
Lv = Lu+ L (ee®™)
> € [a2a11 + bla] et
> [a2A0 — Ma] et
> 0, if « is taken large,

where M is the upper bound for the b;’s. Applying the special case to v and letting ¢ — 0,

we are done (here we need the boundedness of ). O
Remark:
1. If “Lu > 07 is replaced by “Lu < 0”7, then we obtain weak minimum principle

min v = min u.
Q o0



2. Physical meaning of Lu > 0 in Q is that —Lu(x) = f(x) < 0 the creation-degradation
rate is negative, which means the material is reducing heat, like a refrigerator. One

non-example is that the following equation

Au=1 in O

%L’m:()

has no solution, according to divergence theorem. Physically, an isolated box which is

loosing heat everywhere cannot reach a steady state.

Question: What if ¢(x) # 07
Bad News: We consider

Lu=u"~+wu, on (0,7)
then L(sinx) = 0, but it does not satisfy the maximum principle.

Theorem 1.2.2. Weak Maximum Principle (¢ < 0) Suppose L is strictly elliptic on a
bounded domain Q and u € C*(Q) N C°(Q) satisfies Lu > 0 in Q, then

maxu < maxu’,

Q o0

provided b;’s are bounded on €, and ¢ <0 in Q.

iEA. Let QF = {& € Q; u(z) > 0} be a sub-domain, then there are two cases.
Case 1. QT = (), trivial.
Case 2. QF £ 10,

sub-case 1. QF C €, then on QF, we have
0 S aijuij + bﬂh + Ccu,

which implies
a;juwij + biu; > —c(x)u >0, on Q.
Applying weak maximum principle for ¢ = 0 to u on QF, we obtain
max u = maxu = 0,
or a0+
which is a contradiction.

sub-case 2. 90T N IN # ), then

maxu = maxu
Q o+

= maxu
o0t

= max
oN+tNoQ

< maxu™
20



Caution: Without “+”, we will have a counter-example
Lu=vu"—u, Q= (-1,1),

and u(z) = —(2* + 100), then Lu = 100 — 24+ 2*> > 0 on Q, and maxgu = —100, while
maxgn u = —101.
Remark:

1. If we replace “Lu > 0” by “Lu < 0”7, then we have a minimum principle

min > minu
Q o0

where v~ = min{0, u}.
2. If we have “Lu = 07, then there are two cases
Case 1.
max |u| = maxu
Q Q

< maxu™

o0

< max |ul
B)

< max |ul,
Q
and so maxg u = maxgn u™.
Case 2.
min |u| = —minu
Q Q
< —minu~
ETo)
< max |u|
0
< max[ul,
Q
and so ming v = mingo u~.
3. Question: What if 2 is unbounded?

Bad News: u(x,y) = y is harmonic on the upper half plane satisfying zero boundary
condition, then its maximum value is infinity while on the boundary it’s constant 0.
Solution: This can be saved if  lim  wu(z) exists.
Q5z— (L)oo

Theorem 1.2.3. Suppose ) is unbounded, and for every R > 0, b;’s are bounded in
QN Bgr(0). L is strictly elliptic on QN Br(0), and u € C?(2) N C°(Q) satisfies

Lu >0 in Q;

u(00) = limos, (400 u(x) exists.

Then



i) supg u = max{supyq u, u(co)} if ¢ = 0;

ii) supg u < max{supyq u’, u(c0)} if ¢ <0 in Q.

1E8]. Applying WMP on Q N Bg(0), we obtain

sup u = max u
QNBg a(QﬂBR)

= Inax | maxu, maxu | .
ool ' oal

Sending R — 0o, we obtain

sup u = max{sup u, u(o0)}.
Q o0

(¢ <0) Similar proof.

O

Theorem 1.2.4. Comparison Principle Assume Q2 is bounded, L is strictly elliptic on 2,

b;’s are bounded and ¢ <0 on Q. Suppose
Lu > Lv, in €
u <, on 0.
u, v € C2(Q) N C%Q), then u < v in Q.
1E8]. Simple application of WMP(c < 0). O
This immediately gives the following corollary.

Corollary 1.2.1. Assume conditions in CP on Q and L. Then the Dirichlet Boundary Value

problem has at most one classical solution.

Example for non-solution:

v +u=1, onQ=(0,7);
u =0, on 0f).
has no solution. This can be verified by multiplying sinx to the equation and integrate it

over €.
Applications of WMP:

1.
Au+ f(u) =0, in bounded ;

u’asz =0,

with f € C*(R) and decreasing, then (DBVP) has at most one solution in C?(2)NC°(Q).

(DBVP)

7



1ER. Suppose uq, us are two classical solution, then we have

A(Ul — Uz) + f(ul) — f(’LLg) =0

We write f(u1)— f(uz) = C(x)(u; —us), then C is non-positive. According to WMP (¢ <
0) we see

max |u; — ug| = max |u; — us|,
) 89

and thus u; = us in Q. ]

. Let Q be bounded in R", n > 3. Suppose u € C?(Q¢) N C°(Q¢) satisfying
Au =0, in Q%
u(00) == limy_,oo u(x) =0,

then, there exists a constant C' > 0 such that

C

1ERf]. Take a large M > 0 such that MT'(x—x¢) > |u|(x), for all x € 9Q°, where X is in
2 and T is the fundamental solution. Letting v(x) = MT'(x — x¢) — u(x), and applying
WMP on unbounded domain, we obtain

infv > min (infv_,v(oo)) =0,

Qe a9¢

|n72

which implies |u(x)| is dominated by 1/|x up to a multiplicative constant. Similar

proof show that u(x) decays exactly at this rate. O

. Let Q be bounded, L be strictly elliptic on €2, i.e.
aij(X)Eigj 2 >\0|£|27 Vg € anx c Qa

where A\g > 0 is some constant. b;’s are bounded by M > 0 and ¢ < 0. Suppose that
u € C%(Q) N C°(Q) satisfies Lu(x) = f(x), then

max |u| < max |u| + K sup | f],
Q o0 Q

where K > 0 is some constant depending only on Ay and M.

Structural Stability: Let f, and ¢, be approximations to f and u| 0q» then the above
result gives global stability of the solution, i.e. the corresponding approximate solution

u, satisfies

m_ax|u _ua| S max|u - ¢a| +Ksup|f - fa|7
Q o0 Q

8



1iEB. We WLOG assume that || f|| = supg, |f| < co. Now, we define @(x) = maxpq |u|+
|||l (€2® — €*1), where d > 0 and Q C (0,d) x R"~'. Applying L to & we have
L = —a110%e*™ | f|loo — brae®™ || f]|os + cti
1flloo (—ai1a®e™™ — byae™™)
< (—hoa® + Ma) ||l
</

where « is taken so large that (—A\ga? + Ma) e®** < —1. According to CP, we see that

IN

@ > w in Q. Similarly, Lu < —f(z) = —Lu, and ﬂ|m > —u{(m, which implies that

> —u in €. Above all, we obtain

|

max |u| < max |t
Q o9

< od —1 :
< max|ul + (e = 1) [|f]]o

1.3 Strong Maximum Principle for Second Order Elliptic

Differential Equations

Baby Example: Lu =u" > 0 on (0,1), and assume there is a local maximum point xy of u
in (0,1), then u = u(xg) on (0,1).

Physical Intuition: There should be no hot pots within a refrigerator.

1.3.1 Hopf Boundary Point Lemma

Definition 1.4. We say ) satisfies interior sphere condition at xo € 02 if there exists an
open ball B C Q such that 9B NI = {x¢}.

Fact: If 09 is C%-smooth, then ) satisfies interior sphere condition.

Definition 1.5. We say 092 is C™-smooth m > 0 if for all p € 052, there is a neighborhood
N of p and shift & rotation of the coordinate system (xy,--- ,x,) such that

i. there is a C™-smooth function ¢ defined in a nbhd Q C R"~1 such that 9QNN s exactly
the graph of ¢(xa, - ,xy) = T1;
7. QNN = {(.’ﬂl,X/) S N,xl > ¢(X/)}
18] . To prove the fact, we may without loss of generality assume that p = 0 and x;-axis is

the direction of inner normal of 90 at p. Under this assumption, we know that ¢(0") = 0 and

V¢(0') = 0. By Taylor expansion at the origin, we have

H(x') = S () D*6(0)x +ol[X?), X ~ 0.

9



Let C" > C be constants that are greater than the maximum eigenvalue of D?¢(0’), then we
further have that
d(x') < CIX'|/2+ o(|x' ) < C'|X|/2, x' =~ 0.

We construct a ball B centered at (R,0) with radius R > 0. By definition we have for

points x € B, x1 > ﬁ|x’ |? with equality holds only when x = 0, provided R is tiny. Thus

we’ve obtained a ball B above the graph of ¢ that intersects the boundary exactly at p. 0O

Lemma 1.3.1. Hopf Boundary Point Lemma Assume Q bounded, L strictly elliptic on
Q, a;;(x), bj(x) and c¢(x) are bounded on Q. Let u € C*(Q) satisfies

e Lu >0 in £
e u is continuous at xXq € IS where the interior sphere condition is satisfied;
e X is a strictly local maximum point of u.

Then, for any outward pointing vector U at Xg, i.e. U-(xg — y) > 0 with y the center of the

ou

interior ball, we have %(xo) > 0 if it exists, provided one of the following statements holds

true:
1. ¢=0 in Q.

2. ¢<0inQ and u(x9) >0

3. u(xg) = 0, regardless of the sign of c.

1E#]. Let Bg(y) be the interior ball that intersects the boundary at xq, R > p > 0, and

A = Br(y)\B,(y). We will construct a function v, such that

a. ve C®(R™), Lv>0in Aif ¢ <0 in

v|8BR(Y) =0;

b.

%(Xo) < 0.

Now, define w(x) = u(x) — u(xo) + €v(x), € > 0 small. Then, we have by assumptions

Lw(x) = Lu(x) — c(x)u(xq) + eLv(x)
> Lu(x) — e(x)u(xo)
> 07

and on the boundaries

w|aBR(y) <0, if R is small enough,

and

w’(’)Bﬂ(y) < —=0+ev<O.

10



WMP(c < 0) implies that w < 0 in A. But w(xo) = 0, this implies that %%(x,) > 0, and so
%(Xo) > 0.

The above arguments only holds for the cases 1. and 2., as for case 3., we define
Lou = ajjui; + biu; + ¢ u=Lu—c"u >0, in Q& close to xq.

Now, applying case 2. to Ly we obtain the same result.
We take v(x) = e~y _ gmeR* for all x € R", where a > 0 is an undetermined

constant. We may observe that
Vou(x) = —2a(x —y)e P,

which shows that 5%(xo) = Vu(x) - 7 < 0. Meanwhile,

vij = —2ad;;e P 4 daP (@i — i) (@) — yy)e I,
and so
Lv = a;vi; + byv; + cv

= —2aija5ije*a|x7y‘2 + da;;o® (z; — yi)(z; — gj/j)e*a"‘*y|2

— ab(z; — yi)e—a\x—ylz +e [e—a\x—yl2 _ e—aRz]

> emobyl® [40*Xo|x — y|* — 2anM — 2anMR — M|

> ekl [40®Xop”® — 2a[nM — nMR] — M|

>0,
if & > 0 is taken large. O

1.3.2 Strong Maximum Principle

Theorem 1.3.1. Strong Maximum Principle Let Q be bounded and L strictly elliptic in
Q with a;;, b; and ¢ bounded. Suppose u € C?(2) N C°(Q) satisfies Lu > 0 in Q, and maxg u
is achieved at some xo € Q. Then u(x) = u(Xq) in , provided one of the following holds:

1. ¢=0.

2. ¢(x) <0 in Q, u(xg) > 0.

3. u(xo) = 0.

1ERf. Define Q= = {u(x) < u(x¢)}, and assume Q= # (). Then, we see that 2~ is open and
claim that 92~ N Q # @ by connectedness of Q. Let x; € 90~ NQ and x, € O~ satisfying
dist(x1,x2) < dist(x2,00). Increasing radius of a ball centered at x5, the ball will first touch
a point in 9Q2~. Let x3 be the point, then {2~ satisfies interior sphere condition there, and an

simple application of Hopf’s boundary point lemma finishes the proof. O
Examples:

11



. Separation of Solutions

Baby Case:
v = f(z,u,v’), =z € (a,b),
v = f(z,v,v"), f “nice”,
u >, on (a,b).

Then u = v, provided u(c) = v(c) and u/(c) = v'(c).
PDE Case: Let Q2 be bounded in R”, Lu = a;;u;; + b;u; strictly elliptic, and a;;, b;
bounded on Q. Suppose u,v € C?() satisfying

— Lz = f(x,2), x € Q, where for all M > 0, f.(z,z) bounded for all x € Q, z €

— u >wvin

— u(xg) = v(xp) for some x, € Q.

Then v = v in Q.

1. We will first restrict our consideration on Q. = {dist(x,08) > €}, with € > 0.
Since Q. is compact, and u,v continuous on it, we may find some M > 0, by which the

two functions are bounded. Observe that
L(u—v) = f(x,u) = f(x,v)
= /1 fo(x,tu+ (1 —t)v)(u—v)dt
0
= c(z)(u =),
which is an equation of the form

Lw—cw=0, in{

w > 0, in 0%,

where at xo w reaches its local minimum 0. According to SMP(case 3.), we see w = 0
in Q. O

. Let u € C?(2) N C°(Q), where Q satisfies interior sphere condition at each p € 9.

Au=0 in €,
%L%z =0, v outward pointing.

Then v is a constant.

JE8. (can also use energy method) Let xo € Q such that maxqg u = u(xg).

case 1. xo € 2, SMP implies that u = u(xo).

12



case 2. Xg € 0f), then x¢ is a strict local maximum point, and so by Hopf, %(xo) > 0,

which is impossible.

O

Theorem 1.3.2. Comparison Principle (Robin Boundary Condition) Suppose  bounded,
L strictly elliptic on Q and a;j, b;, ¢ bounded on Q, ¢ < 0 on Q, 90 € C%. u,v € C2(Q)NCH(Q)
satisfy

Lu > Lo, in €,

% + B(x)u < g—g + B(x)v, U outward pointing,

where 8> 0. Then u < v in .

1ERf. Let w = u — v, then

Lw >0, in Q,
9v 4 B(x)w <0, on O

Let M = maxg w, then if M < 0, we are done. If M > 0, then let u(xq) = M, we have

Case 1. x¢ € Q, then SMP(case 2.) implies that w = M all over the domain, which contradicts

the boundary condition.

Case 2. max of w achieves only at boundary points, and so Hopf(case 2.) will also contradict

the boundary condition.

1.4 Weak Maximum Principle for Second Order Parabolic

Differential Equations

Baby Example: Let 2 C R? be an “oven”, and u the temperature function in the oven. We

suppose u satisfies an equation of the following form
Uy — aiui; + biug = f(x,1),

where f > 0, which means that the oven is producing heat. Physically, one would find that
the oven should reach its minimum temperature near its boundary, because it’s producing
heat in the interior. We define I' = Q x {0} U9Q x [0,T") and it can be shown that

“min v = minu.
Qx[0,T] r

Parabolic Boundary and Interior For a more general time-space domain D C R™ x [0, T
such that DN {t =0} # 0 and DN {t = T} # (), we define its parabolic boundary to be
0D N{0<t<T}. At the meantime, D\I' will be called the parabolic interior of D. It can

be shown that every slice set in time variable of a parabolic interior is open in R".

13



We now consider operators of the form
Lu = u; — a;5u;5 + byu; + cu,
and we would say L strictly parabolic in D if there is a positive constant Ay > 0 such that
(ai;) = Aol
all over the parabolic interior.

Theorem 1.4.1. WMP(c = 0) Assume L is strictly parabolic in D with ¢ = 0, and let
u € CO(D) N C*Y(D\I') satisfies Lu < 0, (x,t) € D\I'. Then

maxu = maxu.
D T

JE8. Special Case: Lu < 0in D\T. Let (xo,to) € D such that u(xo,ty) = maxp u.
Case 1. (x¢,t) € T, trivial;
Case 2. Otherwise, we have wu;(xo,t9) = 0 and Vyu(xo,to) = 0, and (u;;(Xo,%0) < 0). These
calculations force Lu(xg,to) > 0, which contradicts the assumption.

General Case: Lu < 0 in D\I'. Let v = u — et, then Lv = Lu — € < 0 in D\I'. With

the special case applied to v, we see that maxp v = maxr v. Letting ¢ — 0, we are done.

O

Remark:The conclusion above holds even if L is degenerate parabolic, i.e. a;; = 0.
Theorem 1.4.2. WMP(c > 0) Suppose u € C°(D) N C*>*(D\I') satisfies Lu < 0 in D\T.
Assume that L is degenerate parabolic on D\I'. Then

maxu < maxu™.
D r

D

Theorem 1.4.3. Let L be degenerate parabolic on D\I' with ¢ bounded from below on D\T.
Suppose u € C°D N C*Y(D\I') satisfies

Lu <0 in D\T, u}r <0,

then
u<0in D.

7E8]. Let M be the lower bound of ¢, and multiply Lu by e™*. Let v = eM*u, then
eM Lu = v, — agvij + biv; + (¢ — M)v = L*v.

Here v satisfies conditions in WMP(c > 0), and so

maxv < maxv™,
D r

D

which forces maxpu < 0. O
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Corollary 1.4.1. Comparison Principle Assume L is degenerate parabolic on D\T, c
bounded from below on D\T'. u,v € C°(D) N C*Y(D\T') satisfies

Lu < Lv, on D\T,
u <, onT.

Then u < v all over the domain.

1.5 Strong Maximum Principle for Second Order Parabolic
Differential Equations
Baby model: Lu < 0 in a rigid domain (the corresponding time-space domain is a cylinder-

type domain). Then if u takes its maximum value at (xg, %) in the parabolic interior, u will

be a constant before time tg.

1.5.1 Baby Hopf Boundary Point Lemmas

Lemma 1.5.1. Baby Hopf 1 Let B = {(x,t) € R"™; |x]*+ (t — R)? < R*, 0 <t < R}
be a half ball. Suppose L is strictly parabolic on By, a;j,b;&c are bounded on Bp. Let
u e C*Y(By) N C%(By) satisfy Lu < 0 on By. Assume there is a Py = (xo,to) € I such that
xo # 0, u(xo,to) > u(x,t) for all (x,t) € E\{PO}. Then for any outward pointing vector
7€ R at Py, we have

ou

%(PO) > 07

provided one of the following is satisfied:
1. ¢=0in By.
2. ¢>0in By and u(Py) > 0.
3. u(Py) = 0 regardless of c.
iE8. Define ¥ = {(x,t) € By ; |x| > |x0|/2}. We will construct v € C>°(R"*!) such that
a. Lv <01in ¥ if ¢ > 0 on By;
b. ,U‘FB7 =0;
R
c. &(R) <0.
With this, we define w(x,t) = u(x,t) — u(Py) + ev(x,t). Then
o Lw=Lu— cu(FPy)+eLv <eLv <0on;

° w|FE < 0 if € is tiny.
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With WMP(¢ > 0) applied to w on X, we obtain that w < 0 on ¥. But w(F,) = 0 and so

99 (Py) > 0 implies that 2%(Py) >

and 2.. If 3. holds, we see

—€%2(P,) > 0, which leads to the conclusion in case of 1.

0> Lu = u; — a;ju;; + bju; + cru4cu>u — aii; + by, + ctu = L*u,

from where we return to case 2..
To construct such a v, we define v(x,t) = e (P +e-R)?) _ e " with a > 0 to be deter-

mined. Thus b. is immediately satisfied. Observe that

Vienv = e ((—2ax), —2a(t — R))",

and so

%(PO) = _2066(”')()(071:0 - R) U < 07

which satisfies condition c.. Finally, we have
vi; = —2ael 8 + dalxa el
which gives
Lo = 20" ) (t — R) + 2ae a6, — 4w,z a;;et)
+b; (—20e")) + ¢ [e("‘) - e‘“Rz}

< () [~4a®Ag[x|*/4 + 2a(R + Mn + MnR) + M] in &

<0, if « is huge.

Remark:

1) This lemma is true if By is replaced by Bg, provided P, is neither the south pole nor
the north.

2) True if By is shifted but not rotated.

Corollary 1.5.1. This lemma can be naturally extended to any time-space domain with bound-
ary that satisfy interior sphere condition, in which the interior sphere does not touch the

“maximum point” at either the north or the south pole.

Lemma 1.5.2. Baby Hopf 2 let Q(R,h) = {(x,t) € R" xR; |x| < R, 0 <t < h}. Suppose
L s strictly parabolic on Q(R,h) and a;;,b;,c bounded. Let u € C*1(Q) N C°(Q) satisfy
Lu <0 in Q. If u(0,h) > u(x,t) for all |x| < R, 0 <t < h, then u,(0,h) > 0, provided one
of the following holds:

1. ¢c=01in Q.
2.¢>01inQ, u(0,h) >0.

16



3. u(0,h) = 0.

1ERf]. Take a large p > 0 and small 6 > 0, such that N := B,(0,h—p)N{t > h—0} C Q.
We shall construct v € C*°(R"*!) such that

a. Lv < 0in N;

b. v|aB =0;

P(Ovhfp)
C. Ut<0,h) < 0.

Now, let w(x,t) = u(x,t) — u(0,h) + ev(x,t). Then Lw = Lu — cu(0,h) + eLv < 0 in
N if ¢ > 0 in Q. Meanwhile, w|FN < 0. Applying WMP(c > 0) to w we obtain maxy w <
maxr, w" = 0. Then w < 0 all over N. But w(0,h) = 0, then %—f(O, h) >0, and so

ut(0,h) > 0.
To construct such a v, we define
v(x,t) = p* = [x|* = (t = h+p)*.
Then it’s clear that v satisfies b.. And v,(0,h) = —2p < 0 fulfills c.. Finally, we have

Lv = —2(t —h + p) + 2@1']'5”' + bz(—2.’L'1) + cv
<-2h-30—-h+p)+2nM +2nMR + cv
< =2(p—90)+2nM + 2nMR + 26pM

<0, if p large, and 4 small.

Now, we’ve shown u;(0,h) > 0 if either 1. and 2. holds. As for case 3., we see u < 0 all

over (), and as before neglect ¢~ v to return to case 2.. O

Corollary 1.5.2. The conditions that appear in Baby Hopf 2 cannot be satisfied at the same

time.

TERA.
0 > LU(O, h) = Ut(O, h) — aijuij(O, h) + bzuz(O, h) + CU(O, h) > 0.

O

This corollary leads us to prove that the maximum point can only appear on the boundary.

1.5.2 Strong Maximum Principle

Let D be a time-space domain, and p € D. We collect all the points ¢ in D such that
there is a continuous path v in D connecting them, which is non-decreasing in time ¢ and
denote this set by S(p).

17



Theorem 1.5.1. Strong Maximum Principle Suppose L is strictly parabolic on D, a;;,b;, c
bounded. Let u be a nice function that satisfy Lu < 0 in D. If there is a py = (Xo,t0) € D\I'
such that u(po) = maxpu =: M, then u = u(pg) all over S(poy), provided one of the following
holds:

1. ¢=01in D;
2. ¢>0in D and u(py) > 0;
3. u(po) = 0, regardless of the sign of c.
JEM. Let F = {(x,t) € D; u(x,t) = M}, d,,, = dist(po,T') > 0.

Claim 1. By, 3(po) == {(x,t0); [x —Xo| < d,,/3} C F. Otherwise there is a point p = (X,1) in
the ball such that u(p) < M. Let 6 = dist(p, F') > 0 and define a semi-ellipsoid

_ |2 _ 2
Eg—{(x,t); ’?0_6;3 +(t 550) <1, t§t0}7 o> 0.

If0 <o <1, E,NF =0, by definition of §. If 0§ > d,, /3, po € E, implies that
E, N F # (). Therefore we see that:

Sub-claim 1. Increasing o we have that E, touches F' before touching I'.

Sub-claim 2. The touching point Q) is at neither the south nor the north pole. Otherwise [pQo| =
0 > dist(p, F') = 20, which is impossible.

Now we can construct a ball B inscribed in E, “tangent” to F' at (Qy, with Qg not the
south or north pole of B. Baby Hopf 1 implies that for an outward pointing vector v,
%(Qo) > 0. However, by sub-claim 1., Qo € D\I" and Qq € F, we see that V. u(Qo) =
0.

Claim 2. Define C'(pg) = S(po) N {t = to}, then C(py) C F. This is because C(pg) is connected,
and by claim 1 and definition of F', C(py) N F' is both open and closed in C(py). This
also tells us that once a point p is in F, then C(p) will be contained in F.

Claim 3. u = M on S(pg). Otherwise there is a Q = (x2,t2) € S(po) such that u(Q) < M. Let
p1 = (x1,11) be a point on the arc Qpy such that u < M on Qp; and u(p;) = M. By
claim 2., C'(p1) C F, and S(po) is already split by C(p;). Now, we construct a cylinder
Qp, (R, h) = {(x,t); |x—x1] < R, t1 —h <t < t;} with R,h tiny, then with a simple
application of Baby Hopf 2, we are done.

O

Application: Let 2 be bounded in R™ with 9Q € C?, D = Q x (0,T), S = 9Q x [0,T]. Also
let Lu = u; — a;;(x,t)u;; + b;(x,t)u; + f(x,t,u) and define boundary operator to be

Bu = % + B(x,t)u, 8>0, on S.

18



Theorem 1.5.2. Comparison Principle Assume u,v € C*'(D) satisfy

Lu > Lv, in D\T,
Bu > Bu, on S,
u’t:o 2{U|t:07 on €.

Suppose L is strictly parabolic on D, a;;,b; bounded on D\T'. For all (x,t) in the parabolic
interior, f.(X,t,u) exists for any u € (—o0,400). For any R > 0, there is M > 0 such that

|fu(x,t,u)| < M, V(x,t) € D\T, |u|] < R.

Then u > v on D. Ifu‘t:[) + v‘ then u(x,t) > v(x,t), t >0, x € ).

t=0’

Remark: This also holds if Bu = u on S, in which case “x € ” will be replaced by “x € .

1E8. Let w = w —wv. Then f(x,t,u) — f(x,t,v) = ¢(x,t)w, where ¢ is bounded in the
parabolic interior. If m = minp w < 0 is achieved inside the parabolic interior, then by SMP
we see w| +—o = M which can only be 0 or does not occur. If m is achieved on the parabolic
boundary, then we only have worry about S. Applying Baby Hopf 1, we may see it’s not the

case. O

19



20



Chapter 2

Sobolev Space Theory

2.1 Distributions and Fundamental Solution

2.1.1 Distributions
Preparations: Let  C R™ be a domain and D(2) := C5°(2) the space of all definitely

differentiable functions that have compact support in 2. The space D(f2) is not empty:

, ce\x\"l’*l, x e R", x| < 1;
Jj(x) =
0, else,

where ¢ is chosen that the integral of j over the whole space is 1, then one can show that j is

in C§°(R™), with support the unit ball centered at the origin. Now, if we set

) 1 [(x—-Yy
je,y(x): GTL]( 6 )7

we see the integral of j. y is still 1 and it has support the ball of radius € centered at y. Let

y be a point in €, then when € is small enough, j., is in D(2).
Definition 2.1. A distribution on D(2) is a linear functional

f:D) =R
p—=<[fo>

such that f is continuous in the sense that for any sequence {¢r} C D(Q):
i. Supp{or} CC Q, Vk > 1;
ii. If for all a = (ay, -+ ,ap,) € N,
0% x| oo () — 0, as k — oo,
we have < f, ¢ >— 0 as k — oo.
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We shall denote by D'(Q) the set of all distributions.
Examples:

i. Let f € L} .(Q) the space of all locally integrable functions. With this function we may

loc

define a functional on D() as follows:
¢€DGDF$/f&w&Mx€R
Q

One may find that the functional F' € D’'(€2), because given test functions {¢y}, we only
have to check that

|<F.>|= ] IREE

</Q|f||¢k|

< 6el / ]

k
0.

Here, we would like to call F' the functional induced by f, and we shall not distinguish

them in the following contexts
ii. Suppose f € D'(2), and g definitely differentiable, then f - g defined by
»€D) =< f,g9¢ >
is still a distribution.

iii. Fix y € 0, we define
6)’
¢ € D(Q) — ¢(y),

and it is indeed a distribution. This kind of distribution is called d-function (or Dirac

function).

Definition 2.2. Let f;, be a sequence of distributions, and f another one. We say fr — f as
k—o0

k — oo if for all fized test function ¢, < fr, o >— < f,d >.
Theorem 2.1.1. Let f;, be a sequence of integrable functions such that

1. fr concentrates at a point in the following sense:

Vo > 0, / | fr(x)]dx 20,
{Ix—y|>5}n9

k—oo

. [ofe — A€R and fi uniformly bounded by M >0 in L'.
Then f, converges to Ady in the sense of distributions.
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iE. Given a test function ¢, we see A¢g(y) = limy—o [, fr@d(y), and so it suffices to show

/Q e 16(x) — 6ly)ldx = .

For € > 0, we choose ¢ > 0 such that |p(x) — ¢(y)| < € for all |[x — y| < 0. Then the integral
splits into two parts: one inside the ball Bs(y) and another outside it, which finally gives the
bound Me + 2 ||¢]| fsmBJ(y)c | fx| and hence the convergence. O

Examples:
i. Fix y € €, then j.y converges to dy in the sense of distributions;

ii. Suppose f € D() is Riemann integrable on [0, 1]. Let P, be a sequence of partitions of
[0,1] such that ||Px|| — 0 as k — oo. Then

Zf oot Axf’“l>/ f(@)6(x)da

for any test function ¢. Now, the left hand side can be written as < Y7, f(2f)d,s Az}, ¢ >,
which gives the fact that

> F@h)ddaf — f, k— oo,

in the sense of distribution;

]_ x
i kte |4’~‘f . We have

iii. Heat kernal T'(x,t) =

T(x, 1) 2% o,

in the sense of distributions.

2.1.2 Derivatives of Distributions

Motivation: Let f € C'(Q), which along with its partial derivatives is clearly locally inte-
grable. Observe that

of of
5@ > = | 5 (0600

—/Q{aiiw fgf]
:—/fgidx—k/gv-ﬁdx

= f 99 1x +/ F . fids
8@ 99

/ fﬁxl

where F = 0,---,0, f¢,0,--- ,0)7, with f¢ at the i-th position.

<
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Definition 2.3. For every f € D'(Q2), ¢ € D(N), i =1,---,n, we define

< 8f,¢>:—<f,%>.
ZT; 830,-

o
More generally, let o € N* and we define

<0°f,0>= () < f,0% > .

Remark: If the distribution has continuous partial derivatives, then its corresponding dis-
tributional derivatives coincide with them in the sense of distribution.
Example: Let

0, ifx<0;

1, ifx>0.

H(x) =

H is called the Heaviside function. It can be shown that H € D'(f2), and for any ¢ € D(R),

we have

<H ¢>=—-<H¢ >

_ / Z H(2)é(z)dz

= /000 ¢ (z)dx

= —¢(0) + ¢(0)
= ¢(0)
=< o, > .

2.1.3 Distributional Solutions to PDEs

Consider a partial differential operator on 2
m
Lu = Z Aq(x)0%u,
|ae|=0

with all A, smooth. If u is a distribution, then Lu is still a distribution with

m

<Lu,¢>= Y < A0, ¢ >
|| =0
=Y (D <w,0%(Aad) >
|| =0
=<u, Y (=1)*9*(Aa0) >
|| =0
=<u,L*¢ >,

where L* is called the formal adjoint of L. The formal adjoint of the famous operator Laplcian
“—A” is itself.
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Definition 2.4. Consider PDE Lu = f @ on Q, with f a distribution. We say u is a

distributional solution of ® if Lu = f in the sense of distribution.

Fundamental Solution: Now, we focus on a PDE —Au = dg in R". A solution of this
equation is called the fundamental solution of —Awu = 0. Because J, is radial, we expect the

solution is also radial, i.e. u = u(r). Recall that —Au = —u,r — (n — 1)u,./r = by, we see that
u.r + (n—1)u,/r =0, if r>0.

Now, we have (r"~'u,), = 0, and so u,, = ¢/r"~!. When n =2, u = clnr, and when n > 3,

u = c¢/r" 2. What is the constant ¢?

“Tanglang Street” Method: When n = 2, we have

—Au= (50
= —(u,r +u,/r) = d
= —(ru,)r =rdy
S / —(ru,)rdr :/ roodr
0 0
= —TU, :/ rdodr
0
= —ru, 277—/ do(x)dx
|x|<r
- L 1
=——1In
Uy 5 T

“Ivory Tower” Method: We regularize clnr by £ln(r? 4+ €%) = u.(x), with € > 0 small.

Observe that u, is smooth for each index, and we may compute
—Au, =

Now it’s easy to show that this is an approximation to the identity multiplied by —2wc, i.e.
—Au, — —2mcdy

as € — 0 in the sense of distributions. Now we have
lim < —Aue, ¢ >=< 2mcdy, ¢ >
e—0
= lim < u,,—A¢ >= RHS
e—0
= lim [ wu.(x)(—A¢(x))dx = RHS
e—0 R2

|Inr| € L' (B1/2(0)), and we may apply LDCT

= LHS:/ u(—Ag¢)dx =< —A(clnr), ¢ >,

R2

25



which implies that —A(clnr) = —2mcdy in the sense of distributions and that it suffices to

choose ¢ = —5-.
T

“Tanglang Street” Method: When n > 3, we see similarly
— Au = (50

—(Upr + (n = D), /1) = g

—(r" ) = "5,

/—(T”lur)rdrz/ "o dr
0 0

-
—r"_lur—/ 5o dr
0

—r"_lur/ da:/ do(x)dx
|lo|=1, c€R™ [x|<r
1

o |Sn71 ‘rnfl )

el

Uy =
which gives u(r) = W = TI'(x).

“Ivory Tower” Method: To show —AI' = g in the sense of distribution, i.e.
<T,—A¢ >=< by, ¢ >,

for all test function ¢. To this end, we again regularize I'(x) as

1
(n — 2)n|B,(0)[(12 + )72

FE(X) = > 0.

Question:

| ri-n0) — [ r-aore

Rn
Answer: Yes! Observe that ¢ is smooth and compactly supported, then there exist big R
and M > 0 such that Supp{—¢} C Bg(0), | — A¢| < M and so

Te(=Ad)| < cnMXBro) - € L'(R™).

Tn—2

where ¢, = Applying LDCT, one can prove the answer. On the other hand, we

1
(n—2)n|B1(0)] "
check that —AI', converges to dg

i

or'.
o= (2 —n)en(r? + )2,
,
and
0°T. ,
= (2 — n) [72(7“2 +62)—(71-5-2)/2 o2 4 (7"2 T 62)—n/2:|
r

_ cn(n —2)[(1 = n)r? + €]
(r? + 2)(n2)/2
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Thus

0%r r  or

’I'L€2

(T2 + 62) (n+2)/2

62

T B0 + )

2 _
—AFE——<8FE+n 1811)

=cp(n—2)

which implies that

oo 2

€
— AT, dx = »=1drdo.
/Rn' ()l /||/ B, (0)](r2 + e@)menz 90

Let r = etan(#), then dr = esec?(0)df, and then

n—1 w/2 n—1_n 2
RHS — IS 5 ) / (tan(@))" e sec (H)de
0

| B ) ent2(sec(f))

_ / ::;(0 " (cos(9))"d6
/

(sin(6))" " *dsin(#)

i, fo. De(x)dx =1

iii. For a fixed § > 0, we have

x/2
—Al'.(x)|ldx =n sin(0))" ! cos(0)do
/Mr )| / (sin(8))"" cos(6)

arctan %

— 0,
as € — 0.

Remark: For a fixed y € R we have in the sense of distribution I'y(x) := I'(x — y) satisfies
the equation —Ayu = 4.

Poisson Equation:

—Au(x) = f(x), x € R",

where f denotes the density of charges and u the corresponding electric potential. Let f(y)dy
be the total charges of a small piece of electric material near y, then its electric potential at
x is approximately given by I'(x — y) f(y)dy, and so it is reasonable to guess the observed

potential should be



“Tanglang Street” Method: Check

—Ax | T(x—y)f(y)dy = /R —Ax(P(x —y))f(y)dy

Rn

“Ivory Tower” Method:

Theorem 2.1.2. Suppose f € CZ(R™), and let

ue) = [ Tec-y)s(y)dy.

then v € C*(R") and —Au(x) = f(x) for all x € R".

1EP. Since f is C2-smooth and compactly supported, u(x) is well-defined. Let e; = (0,---,0,1,0,- -

with 1 at the i-th position, then we have
u(x + he;) — u(x) _ / F(z)f(x+ he; —z) — f(x — z)

’ . dz

~ [ r@geor shes - zyaa,

where fx, is bounded and compactly supported and I' is locally integrable. According to
LDCT, we have

lim u(x + he;) — u(x) _/ I'(z) lim f(x+he¢—z)—f(x—z)dz

h—0 h h—0 h

= /n F(z)g;; (x — z)dz,

which exists and continuous (shown in a similar way.) In the same manner, one can handle
the second derivatives, which immediately show that the integral function satisfies Poisson
equation.

O

Remark: This integral function is called Newtonian Potential.

2.2 Weak Derivatives

Definition 2.5. Suppose u € L}, () and its distributional derivative *u can be realised by
a locally integrable function v, then we say v is the weak a-th partial derivative of u, and

simply write v = 0%u.
Remark: If u € C1*/(Q), then its weak derivative is exactly the classical one.

Definition 2.6. We say u € L}, () is k-times weakly differentiable if all weak derivatives

loc

0%u with |a| < k exist. The set of all such u is denoted by W*(Q).
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Example: Let u(xz) = |z| defined on the real line, then the weak derivative of it is

1, if x >0,
u'(x) =< -1, ifz<0,
0, else.

What about v”? The answer is that it does not exist: If weak u” exists and equals v(z), then

v is locally integrable and for all test function ¢ we have

/_: v(z)p(x)dr = /00 u(z)¢" (v)dx

— 0o

—AWM@W@Mw+/OUWW%@W

— 00

r=00 fo%e) =0 0
—w| - [ v@e@erw| - [ e
=0 0 rT=—00 —o00
= 2¢(0).
Recall that
ce\x\éfl, x € R", |x] < 1;
j(x) = j(x) =

0, else,

and we set ¢, = j(x/€). Thus we see |v(z)d.(x)| < j7(0)|v(z)|xs, () if € < 1, which is
integrable. According to LDCT, RHS = 2;j(0) while LHS converges to 0, as € — 0.

2.2.1 Approximate Bad Functions by Good Ones

Definition 2.7. For all u € L}, (), the reqularization of u is

loc
w) = [ jix=yyuy)dy.
where 0 < € < dist(x,09), and j(z) = %j(2).
Remark:
1. u. is well-defined because
lge(x = y)u(y)] < ljelle [u(y)XB. 00 (¥),
which is integrable.
2. If u is integrable on €2, then for all x € R and € > 0 we define
w) = [ ilx=yyuy)dy.
where we extend u by letting it to be 0 outside €. Then u.(x) = j * u(x).
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Lemma 2.2.1. For any fized € > 0, u. € C*>(Q.), where Q. = {x € Q; dist(x,00) > €}.
Moreover, if u € L'(Q), then u. € C*(R™). Also, if Q is bounded, then Supp{u.} is bounded
and u, € C3°(R™).

1. Let e; = (0,-,0,1,0,---,0)T, with 1 at the i-th position. For any fixed x € Q., we

consider
ue(X+h6i) _ue( ) / j€(X+he’L Y) _je(x Y)
: u(y)dy
/ oz, S Je(x+ 0(h)e; — y)u(y)dy,
where 0 < §(h) < h, and
. 0Je
T%JG(XJré(h) —y)uly ‘ Haxz N Y)IXBein0(¥)
JJe
H e Y)|XB.x0)(¥),

with € < I < dist(x,09) and h small. Now, applying LDCT we see

lim (X + he;) —u(x

lim A 8 o(x = y)uly)dy

. L k .
Now, suppose Xy, is a sequence of points in €2, such that x; — x in .. Then we have

Ou, Ou, 0je 0je
< —v) — _
o) = 52200 < [ 0 y) = 2 o y) )y
the integrand is dominated by an integrable function 2 H gje [u(y)|xBs ) (¥)
X o

— 0, as k — oc.

Similar proofs show that u. € C*(£.). When w is integrable, then u. is smooth all over the
space. If further  is bounded, then we take x such that dist(x,{) > €, and observe that
Je(x —y) =0 as a function in y. O

Lemma 2.2.2. If u € C°(Q), then for any Q' cC Q (' C Q)

on Q' uniformly.

JE8. Let € € (0,dist(€Y,09)), then
u(x) = / Je(x = y)uly)dy
Q

is well-defined on ¥, and we may observe that the integrand supports on a small ball B.(x).

If we let z = *=¥, we see dz = -dy and
ue(x) = / j(z)u(x — ez)dz.
B1(0)
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Now, we rewrite u(x) = fBl(O) j(z)u(x)dz and observe that
0.0~ < [ ja)lutx - @)~ u()lda.
B1(0)

On a slightly larger domain Q" (' CcC Q" CcC Q), we know u is uniformly continuous, and

so we are done. O

e—0 .
Lemma 2.2.3. Let 1 <p < oo, u € LY, (Q) (L?), then u. == u in L? ().

loc

iER]. We want to show for any ' CC Q

ue(x) — u(x)[Pdx =3 0.
Q/
Recall that

u(x) = /Bl(o) Jj(z)u(x — ez)dz,

we have

e — ll o ey = \

[ i)l a) — () da
B1(0)

L ()

< /Bl(o)j(Z) (- — ez) = u()|| gy d2-

As before, we consider an intermediate domain " and redefine u by setting it to be 0 outside
Q". Now,

[ue = ull oy < / J(2) l[u(- = ez) = u()l| o @) 2,
B1(0)
and by continuity of L?(IR™)-norm in spacial translation, we see
e—0
lu(- = €2) = u(-)ll poggny = O
uniformly for z € B;(0). Thus we obtain the L?(€') convergence. O

Remark:

1. In the case of u € L*(Q), u. € C>*°(R"), and

[ y)u(y)dy\ <(/ |u<y>|ﬁdy)l/p ([ i y>|p'dy>”p' ,

which implies that u, is well-defined.

ue(x)| =

2. C°(Q) is dense in LP(Q) with 1 < p < oco. For k > 1, we define Q, = {x €
Q; dist(x,00) > 1/k,|x| < k}. Letting ux(x) = u(x)xq,(x) € LP(2), we see uy
converges to u in LP() according to LDCT. For fixed k > 1, we apply Lemma (2=23)
and find that

(wr)e =3 ug, in LP(R),
where € is taken so small that Supp{(ux).} CC Q.
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3. Lemma (P=23) is not true when p = oo.

Corollary 2.2.1. Well-definedness of Weak Derivatives Let u € L, .(2), and suppose

that vy, vy € Li,(Q) are a-th derivatives of u, then vy = vy a.e. on Q.

1ER]. By definition, we have

[ o=l [woro = [ wo, oe i)

/Q(vl —vg9)¢ = 0.

Replacing ¢ by je(x —y) and applying Lemma (PZ=233) we are done. O

and so

Lemma 2.2.4. Ifu € L}, () and weak 0*u exists. Then for any x € Q.

Classical 0%u.(x) = (0%u), (x).

1£8]. By Lemma (2221), we have
/ 9%je(x — y)u(y)dy
— [5G - ) )y
Q
= [ x=y)outy)dy
= (0%u), (x).

2.2.2 Properties of Weak Derivatives

Proposition 2.2.1. Suppose u € L}, .(Q), and its first order weak derivatives exist and Vu =

loc

Oa.e.. Then u = Const.a.e. on €.

18, By Lemma (2222), Vu, = (Vu), = 0. Thus u, = Const.C, in .. By Lemma (2223),
ue converges to u in L}, () as e — 0. Since Q. is growing as e — 0, we observe that, when
restricted to a compactly embedded domain €’ and after passage to a subsequence, u. = C.
converges pointwise to u. This forces u to be a constant on ', and by arbitrariness of 0, u

is constant all over the domain. O

Theorem 2.2.1. Let u,v € L, (Q), then v = weak 0%u if and only if there is a sequence of

smooth functions uy such that
o u, — u in L}, (Q) as k — oo;
e Classical 0*uj, — v in Li,(Q) as k — oo.

32



1ER]. “ <= ": For all test function ¢, we have
/ vp = lim | O%ugo
Q k—oo Jo
1nn(—1)a(/nukaa¢
k—o0 Q

and then v = weak 0%u.
“ = " For k> 1, let Q = {x € Q; |x| <k, dist(x,00) > 1/k}. Then for large k, Q. is
nonempty and compactly embedded in €. Define

uk (%) = (U|Qk)1/k (x)

= / Jie(xX —y)uly)dy, x € Q.

Qp
By Lemma (2227), u, € C*(R™). To show the convergence, one should observe that for a
fixed x € Q' CC Qy,, ko large, and k > k¢, we have

ug(x) = /Q Jik(x = y)uly)dy
_ / duk(x = y)ul(y)dy
QxNBy k(%)
=/ Jik(x — y)u(y)dy
Qe

- <U|Qko>1/k ().

According to Lemma (E223), ( ) ) converges to u| o, in L'(Q,) and hence
1/k 0

u’QkO
wp =X win LYQY).
On the other hand, by Lemma (2=24), we have

0w, =0 (ulg, ) (%)

1/k
- (6au|9ko)1/k (%)
= (U|Qk0>1/k (x), xe

"2, in LY(QY).

Remark: In “ <= ”, we only need uy, to be |a|-times differentiable.

Theorem 2.2.2. Chain Rule If f € C'(R), f' € L*(R), and u € L}, (). Then,
o f(u) € Lipe();
o Weak V (f(u(x))) exists and equals f'(u(x)) - Vu(x).
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1ERf. By previous theorem, there is a sequence u, such that

U — U,
®

Vur — Vu,

in L}, .(Q). Now, consider f(ux(x)) € C*(Q), for any compactly embedded domain ¢,

[ 170060 = FluteDlax = [ 17l — u(x)lix

Ul [ 0 = uix)ax

— 0,

as k — oo. This imply that f(u) converges to f(u) in L}

loc

(€2).

Now, we consider the following quantity
/sz/ |V f (ur(x)) = f' (u(x)) Vu(x)| dx = /ﬂ/ |V £ (ui (%)) = f' (un () Vu(x) + f(uk (%)) Vu(x) = f(u(x)) Vu(x)] dx

< Ml / Vg — Vul + / | (uk (x)) = ' (())|| V() | dx
— 0,

as k — oo. The first term converges because of ® and the second converges after passage to

a subsequence according to LDCT. 0

Corollary 2.2.2. Suppose u=ut +u~ € W), then u™,u~, |u| € W'(Q), and

Vu(x), wu(x) >0,

Vu't(x) =
0, u(x) <0,
Vu(x), u(x ,
N ACCRRTC
0, u(x) > 0,

1EBf. For all € > 0, let
Vuz+e2 —e,  ifu>0,
0, if u <0.

Then we have

o f(u)=0ifu<0;

o fl(0+) = =0, and f/(0—) = 0, which implies that f. is in C*(R);

u
\% U2 + 62 u=0

e f.(u) — ut pointwise as € — 0;
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e 0< f(u) <u'.
By Chain Rule, for any € > 0, we have f.(u(x)) € W'(Q) and

ut(x)
Vu?(x) + €

To find the weak derivative of u™, we observe that for arbitrary test function ¢

Weak V (fe(u(x))) = fi(u(x))Vu(x) = Vu(x).

/ fe(u(x))Vo(x)dx = Vu(x)p(x)dx

| e

Sending €, along with the following facts
ut(x)
Vu?(x) + €2
o [f(u(x))Vo(x)| < [Vo(x)|lu(x)] € L(Q),

we finally reach the equation

/Q u* (x)$(x)dx = / Xtu(y0) () V() () dx.

The rest are obtained in the same way.

Vu(x)p(x)| < [Vu(x)|[p(x)] € L'(Q);

Corollary 2.2.3. Suppose u € W(Q), and for some real number ¢ we define
Q. ={x€Q; ux)=c}
Then weak Vu = 0 a.e. on €),.
TERA.
Vu(x) = V(u(x) — ¢
=V [(u(x) = )" + (u(x) — ¢)7]

=0+0=0.

2.3 Sobolev Spaces

Definition 2.8. Let k > 0 be an integer, 1 < p < oo, we define
WH(Q) = {u € WH(Q); 9%u € LP(), |af < k},
endowed with the following norm

1/p
T (/ 3 [07u(x |de) ,

|ee|=0

or equivalently,

llelln () = Z 10%ull Lo (e -

lex|=0
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Theorem 2.3.1. W*?(Q) is Banach.

1E8. Just consider 1 < p < 0o (p = oo easier). ||-||W,C,p(m is a norm:

° ||CU||Wk,p(Q) = || ||u||Wk,p(Q)3

[ ]
i 1/p
Jut vl = | [ 3 10700 + 90 P
2 al=0
. 1/p . 1/pP p
< / S erur |+ | S e dx
1 \Jal=0 la]=0
A X 1/p
< / D 0% u(x)|Pdx + / > [0%(x)Pdx
2 al=0 2 al=0
<

lullwrpi) + 0llwes
o If [lullyyepq) = 0, then [lul|, o) =0 and so u = 0.

How about completeness of [|-[|x.,q)? Suppose u,, is a Cauchy sequence in Wkr(Q), then it
is Cauchy in LP(2), and so are their partial derivatives 0%u,,. Recall that L?(Q) is Banach,
we may find us, and v4 to be the corresponding limits. We claim that v, = weak 0%u,, for

all |a| < k. Let ¢ be a test function and write down the integral equation we see

L@au,,L¢:(—1)|a|/52um8a¢.

By Hélder inequality, LHS — [, va¢ and RHS — (—1)1®l [ us0%¢ as m — co. Now,
using [+l e ) We see Uy — Uoo in WkEP(Q) as m — oo, which shows that W*»(Q) is

complete. O
Theorem 2.3.2. For 1 < p < oo, W*P(Q) is separable and reflezive.
iER]. Define mapping

T:wh(Q) - [] L7

la|<k

u— Tu = (0U)|a|<k-

Then T is linear and isometric from W*?(Q) to its image, i.e. ||[Tu| = ||u]|. According to

basic facts in Functional Analysis, we are done. O

2.3.1 Density Result

C>(€)) may not be seen as subspace of W*P(Q), but C>(Q) N W*?(Q) is dense in
WkP(Q). To show this, we need partition of unity.
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Theorem 2.3.3. Partition of Unity Let {U,};°, be bounded open subsets of Q@ such that
e U, CQ, Vi>1;
e Fvery compact K C § intersects only finitely many U, ’s;
o UX U, =0Q.

A partition of unity, subordinate to the open covering {U;}:2, is a sequence of C§°(S2) functions
¢; such that

1. All ¢; > 0;

2. Supp{¢i} C Ui;

332 di(x) =1, Vx € Q.
8. Step 1: Construct a new open covering V; of Q such that V; C U;. Let F} = 71\ U2, Ui,
then F} is closed and bounded, and Fy |JU,U; = Q. Since U; C Q, OU; C Q, and so U; C
U2, U;. Thus Fy C U;. Take 0 < e < dist(Fy,0U;)/2, and let Vi = {x € Uy; dist(x, F1) < €},
then Vj is open, and F; C V3 CC U;. We also have Vi | JUZ,U; = Q.

Now, let Fy, = U\ (Vi JUR,U;), we see F is compact, Fy|J (Vi |JUR,U;) = Q, and

F5 C Usy. As before, we obtain V5 and hence inductively V;’s for each ¢ > 1.
Step 2: Construct v; € C°(U;), 1; > 0 and ¢; > 0 on V; for i > 1. Let

Vi(x) = (X%)e

—/}mdwﬂ&—yMy
U;

= / je(x - y)dY7
Vi
and according to Lemma (2221), 1; € C5°(R™). Moreover, for all x € V,

zMﬂ>/] XV, (¥)je(x — y)dy
B (x)NV;
>0,

and Supp{¢;} C {x € U;; dist(x,V;) < e} CC U, if € < dist(V;, 0U;)/2.
Step 3: Let 1(x) = > i~ ¢;(x), then for all fixed xo € €, there is some i > 1 such that
x € V;, and by Step 2, ¥(x0) > ¥i(x¢) > 0. Take a small 6 > 0 such that Bs(x) C 2, then

only finitely many U,’s intersects Bs(x), and recall that Supp{1;} CC U;, we see on the ball
1 is only a finite sum of smooth functions, and so by arbitrariness of x, we know 1 is smooth
all over Q. Finally, letting ¢(x) = 1);(x)/1(x), we are done.

O

Remark: How to evaluate integrals on surfaces? Suppose €2 is bounded and there are bounded
open sets {(U;, g;)}._, such that Q C UL_,U; and g;’s are the coordinate function of QN U;.
Then there exist ¢, € C3°(U;) such that

37



o ¢ > 0;

° Zle o = 1.

With this, we have for some proper function f on 952,

” f(x)dS = ; /m f(x)¢(x)dS
= Z/U(fsz)(l'l, 7xn—1agi(x1,"' 7$n_1))dS

— Z/nl(fd)i)(x"gi(x/)) 1+ Va2 (x)dx'.

Theorem 2.3.4. Density Theorem for Sobolev Space Let 1 < p < oo, k > 1. Then
C>(Q) N WkP(Q) is dense in WFP(Q).

iE8]. Want to show, for all u € W*P(Q), € > 0, there is a v € C$°(2) N W*P(Q) such that
[ = vllyenq) <€

In this situation, mollifiers are not enough, because by Lemma (2ZZ4), (0%u). = 0%u, only
on a subset Q. CC Q, and so 0%u, may not converge to 0%u.

Take large R > 0 such that Br(0) N Q # 0, and define for each j > 1, Q;, = {x € Q; x €
Br4;(0), dist(x,00Q) > 1/j}. Then Q; CC Q;41, and Q; 1 Q. Let U; = Q;14\Q,_1, j > 0,
with Qg = Q_; = 0. Then U,’s satisfy the conditions in previous theorem, and there is a
partition of unity {¢;}52, subordinate to {U;};2,. Because u € W*P?(Q), we have ¢;u €
WP (Q), and Supp{¢;u} CC Q;11\Q;_1.

We will consider (¢;u),. By Lemma (2224), for small 2 > 0

9%(¢ju)n(x) = (9%(95u)),, (x), VX € Uj, |af <k,

because when h ~ 0, its support must be compactly embedded in U, which also implies that

the above equality holds on the whole R". By Lemma (223), (0%(¢;u)), 9 0*(¢ju) in

L?(Q2), and then
(du)n "=2 pju, in WHP(Q).

For € > 0, we take h; > 0 so small that
||(¢ju)hj - ¢ju||Wk,p(Q) < E/Qj. ®

We now set v(x) = 377 (¢;u)n, (x), and because it’s locally a finite sum, we see v is well-

defined and definitely differentiable. By ©, we see v approximates u well in W*?(Q). O

Remark: If 9Q is C' and Q bounded, then C*=(Q) is dense in W*P(Q). (see Gilbarg
Trudinger Sobolev Spaces.)
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2.3.2 Sobolev Imbedding Theorem

It is not hard to find that C§°(2) € W*P(Q). We take the closure of C§°(Q2) in W*»(Q),
and denote it by We?(Q).

Theorem 2.3.5. Sobolev Inequality
. If 1 <p<n, then

Snp IVUll gy Yu € W(;C’p(Q)Q

el 22, o

i. If p > n, then for u € WEP(Q), we have u € C°(Q) (there is & € C°(Q) such that

i =ua.e. in ), and

llleo oy Snp 19177 VUl oy -

iE£7]. Proof of i.: First assume u € C}(Q2), and extend u = 0 outside (2, so that u € Cj(R").
By FTC, we have
uten ol =| [ 5

S/ |y, |d;
— 00

oo

—o0

Cy gyt 7$1)dx1

and then

<11 / |
=1

=>/ w(@y, -, @,)| T Tde < (/ Iuml(rclf--,xn)ld.’tl) / lH/ |t Id%] dz:

i=2Y T

< </OO |um1|d$1) X H l/ (/OO Iumildxi)nll.(nl) dxl} -
= [ [ (] i)
<[ (/jwml)m]“xm/z/z (] .

which, after induction, gives that

[l o < H [(([, el x)dx)"il

_1
n—1

_1_
n—1

dl‘z> dI1d$2:| s
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Taking the —"

-th root of both sides, wo get

1 SH()R
l n
1.

< — Vu|(x)dx
T L 19l

IN

Thus, we obtain
1
ol oy < 7 a2, 3

which is the desired inequality when p = 1. Now, in £\, we replace u by |u|" (r > 1 to be
determined). We then have

rlul"" Vu - sign(u)||L1(Q)

1
Il N gy < = |
T r—
< 9l [l

Take r such that

™m o= = (’I“ - l)p/7

/
and we find that r = p,’i — > 1 and n’"fl = % == —» and according to L\, we have

([ 15 000s) ™ < 219l ([ i 00ax)

[l

For general u € Wy*(Q), by definition of it, there is a sequence u, € C5°(Q) such that

-

and hence

L gy S [Vl » Y € C(9). 2

up — uwin WHP(Q). Applying ®to u; we have

|vu7€HLp(Q) J

n <
Ln—pp (Q) ~n,T |
and by the convergence ur — w in LP(£2), we may find a subsequence such that up, — u

pointwise. A simple application of Fatou’s Lemma finishes the proof:

ful o0 < sy S A [Tt = [V 1
Proof of ii.: Given u € C(}(Q), let @ = quluf%’ and assume |Q2| = 1. Recall from proof of
1., we have
r r r—1

|||U’ |Lﬁ(Q) < ﬁ ||vul|LP H|U| ||LP’(Q)7
and thus

lal"ll, < fﬂ\ulr e 1Vl Loy

fH\ |T 1||LP Q) ||V\/>| ||VU||Lp

=r H|U|T_IHLP’(Q) )
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or equivalently,

@l < 7l yy »

and hence
- i ~plel
@l < 7 lal
<l
where we used the assumption || = 1. Now, we take r = 6™, m = 1,2,... with § = Z—,/ > 1.

We then have

T e
|’I’L'5"" S (6m)6 HUH(SWL—ln/

[

1—5—(m=1 -

—m —(m—1 — 1-6
< (6m)° [(5m_1)5 ( )HﬂHém_Qn, } , (Reversed Holder)

=6y (1=6"(m71)

STmay 1)~ (m—1)
< gmeHim=D) |5

< G g (8T8 (m=1y..(1-571)

[T, (1—=6—%)
Vnu e
[Vaull,

—k
Y

Recall that [ull,, < o= ||Vul|, < % [Vul[,, we have

||ﬁ||n’§m S (52130:1 k(s_k — X < 0.

Sending m — oo we have
2]l < X,
and

Yu € C5(Q), D

[l

o = f ||VU’HLP(Q) J

The general case that u € WO’ () is obtained through density arguments.
What if [ # 1?7 Let v(y) = u(|Q|"/"y), and apply € to it, we see

H“HCU(Q) = ||UHCO(Q/|Q\1/") S IVl Q/|1Q /)y = ||VUHLP Q) ‘Q|

Theorem 2.3.6. Sobolev Imbedding Theorem Suppose 1 < p < oo, then

np

L= (%), if1<p<n,
Wé’p(ﬂ) =9 LI(N),VI<g<oo, ifp=n&Q bounded,
Co(Q), if p > n&Q bounded.

1ER]. When p # n, the conclusion follows from Sobolev inequalities. The case p = n is
obtained by Hoélder Inequality. O

Remark:
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1. When n < p < oo, and €2 bounded, we have
Wo(Q) = C*(9),

where o =1 —n/p, (see HW4);

2. When p = n, the best estimate is the bound for the BM O-norm, (see Partial Differential

Equations by Evans);

3. . implies that 1 ¢ WEP(Q).

Corollary 2.3.1. Poincaré Inequality Suppose 2 bounded and 1 < p < oo, then for all

ue W,P(Q)
[ull o) Snpo VUl oo -
1E8f]. We argue case by case:

Case 1. 1 < p < n, we have

Holder
||UHLP(Q) S p,n,Q [|ul

np
L7=p (Q)

S0 ||Vu||Lp(Q) ;
Case 2. p = n similar proof;

Case 3. p > n, we have

||UHLP(Q) < ||U||L°o(sz) |Q|1/p

Sein jQ/r ||VUHLP(Q) :

O

Corollary 2.3.2. Let u € Wol’p(Q), with  bounded, we may define an equivalent norm

IVull 1oy on this space, provided 1 < p < occ.

2.3.3 Relich-Kondrakov Compact Imbedding Theorem

Terminology: Let (X, |-]|) and (Y,]|-]|) be Banach, then we say X is compactly imbedded

into Y if there is an injective bounded linear map 7 : X — Y that is compact in the sense

that bounded sequence in X has convergent subsequence in Y.

Theorem 2.3.7. Suppose 2 is bounded and 1 < p < n. Then

WEP(Q) < LUQ), V1 < ¢ < n”—_pp.

Remark:

1. If p = n and  bounded, then the above compact imbedding holds for all ¢ > 1;
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2. If p > n and €2 bounded, recall that

WP (Q) = C*(Q), a=1—

)

SRS

where
C(Q) = {f € C°(Q); there is a constant C > 0, |f(x)—f(y)| < C|x—y|* Vx,y € .}
We also claim that
C*(Q) = CP(Q), 0< B < a.
(see HW4.)

JER. Special Case ¢ = 1: We wish to show any bounded set A C W,”(Q) (suppose the
bound is M > 0) is precompact in L*(£2), (that is, its closure is compact.) We first claim that
by extending u € Wy?(Q) to be 0 outside Q, we obtain u € W, *(R"), which can be easily
shown using Theorem (2221). Now, we extend all functions in A to be in W, *(R™).
For € > 0, define
Ac = {ue; u € A},

where u.(x) = [, u(y)je(x —y)dy. We claim that for any fixed € > 0, A, is precompact in
L'(Q). To this end, we observe that

e ()] < / [u(¥)lde(x — y)dy
il
< oo
< Wl
Se.,n M7

and

Ve (x)] = [(Vu)(x)]

Vu(y)je(x —y)dy

R"L

[Ell
< = IVully
Sen M.

Thus, {uc}ueca is uniformly bounded on © and equi-continuous. By Arzela-Ascoli Theorem,
A, is precompact in C°(Q) < L'(£2), which implies the Claim.

If w is further smooth and compactly supported, we have

0 = )| = | [ 6= y) (uty) ~ w0y

—| [ @) (utx— e2) ~ uix)) da
Rn

_ /nj(z) (/0 diiu(x _ sz)ds) dz
< /nj(z) </0 Vu(x — sz)|ds> 12]dz.

43




Thus
[ ) = uG0ldx < [Vl ey . 9

What if u ¢ C3°(R™)? In this case, we take a sequence of ux € C§°(Q2) that converges to u in
Wy (Q) and hence in W, ?(R"). Applying & to uy, we have

[(ur)e(x) = ur(x) | L1y < VU] L1y €

and letting k — oo, we see {9 still holds true for u.

Now, according to {, we have
Jue(30) — ()1 < €Clp.m )M, Y € A

Since A, is precompact in L'(Q), for all § > 0, we can cover A. by finitely many balls of
radius 6/2 in L*(Q2). We now choose € = 6/(2C' M), then |lu — u||, < §/2, and so A is covered
by finitely many balls of radius d§, which implies that A is precompact in L*(£2).
General Case 1 < ¢ < ;& =: p™: In this case, there should be a constant A € (0,1) such
that

A+ (1 =N)/p"=1/q
Recall that if A € (0,1), p1,p2,q > 1 and

A 1—-A 1
— +
b1 b2 q

then
by 1-X
£l e < WFN o NF 1 2os -

Applying this to u € A, we have

A 1-A
[l oy < Nullzs o) 1l o) -

By Sobolev inequality, we have
||U||Lp*(9) Sen M,
and hence

_ A
||u||Lq(Q) Spar M ||u||L1(Q) :

With the same proof, we have for u,v € A,
_ A
llu— vHLq(Q) SpinA MR [lu— UHLl(Q) )

which implies that A is precompact in L().
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Chapter 3

L? Theory for Second Order
Elliptic Equations

Through this chapter, we assume 2 CC R"”, and the operator in divergence form:

Lu= - (aij(x)uxi) ; + bL(X)U& + C(X)U, XeE Qv

x

where a;;,b;,¢c € L>(Q2). We say that L is strictly elliptic on Q if (a;;(X))nx, is symmetric

a.e. on 2, and there is a positive constant \g such that (a;;(X))nxn < AoLnxn a.€. on Q.

3.1 Lax-Milgram Theorem
Our main goal is to show the existence and uniqueness of

Lu(x) = f(x), x€Q,
u(x) =0, x € oS

(DBV P)

Before that we introduce a new notation:
k k,2
Ho (Q) = Wo (Q)v

endowed with inner product:
k
(u,v) g (0 :/ Z 0%u(x)0%v(x)dx.
Q
|a|=0

Notions of Weak Solution to (DBVP):

1. We require the weak solution to be in Hj(f2), where the “0” take care of the Dirichlet

Boundary Condition;
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2. The equation cannot be considered as one for measurable functions, because if we assume

on a plane that a;;(x) = k(x)d;;, ¢,b; = 0, with

1, on upper half plane,

k(x) =
0.1, on lower half plane,
and f =0, we find
—Vk - Vu = kAu,

where, according to later discussions, RH S is an L? function, while on LHS, Vk looks
like a d-function, which forces us to discuss the equation in a more intricate way. In

effect, the operator should be understood as distributions:
Lu=fin Q <= V¢ € D(Q), < Lu,p >=< f, ¢ >,
where < Lu, ¢ >= [, au;p; + b + cug =: L(u, @);

3. For general distribution f, the problem (DBVP) is too hard, so we focus on the case
f € (Hy(Q)" = H Q).

Now, we see a reasonable way to define weak solution to (DBVP) should be the following.
Definition 3.1. Suppose f € H=1(Q), we will say v € H}(Q) is a weak solution to (DBVP)
if for all v € H}(Q), we have

L(u,v) =< f,v >y g1 -
Remark:

e A weak solution must be a distributional solution;

e What are the ingredients of H1(Q)? Well, if f € L?(Q2), then f naturally induces
a bounded linear functional on H}(). What are the others? According to Riesz’s
Representation Theorem, any Hilbert space is equivalent to its dual, and so to any
bounded linear functional g on Hg(£2) there corresponds a unique element p € H}(Q)
such that < g,v >g-1 gi= (p,v)y; forall v € H}(Q). By definition of RHS, we have a
realization of g, the sum of an L? function and the distributional derivative of another

L? function.
Motivational Example: We consider

~Au=feH' inQ,
u =0, on 0f).

(DBVP)

Then, (DBVP) has one and only one solution. Recall that W, ”(£2) has an equivalent norm
V[l Lo () and since here p = 2, we may apply parallelogram principle and define a new inner

product on H} () as follows:
((w,v) g = / Vu(x) - Vu(x)dx.
)
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Now, a simple application of Riesz’s Representation Theorem will give us the result. To tackle

the general (DBVP) however, we require a generalization of RRT.
Theorem 3.1.1. Lax-Milgram Theorem Let H be Hilbert, and a(u,v) a bilinear form on
H satisfying

o There is some N > 0 such that

la(u, v)] < N ul[|[o]l; u,v € H;

e There is v > 0 such that
a(u,u) > 7 [|ul*.

Then, for any f € H*, there corresponds a unique u € H that realizes f in the sense that
a(u,v) =< f,v >g« pu, Yv € H.

Moreover, we have the bound
lull < 2 1141
ul| < — .
8

1E8]. Observe that for a fixed v € H, the mapping v — a(u,v) is linear and bounded, and
thus according to RRT, there is a unique A, € H such that

(Ay,v) = a(u,v), Yv € H.

Claim 1. A, induces an injective linear and bounded map from H to itself. Linearity
is clear to find, and we focus on boundedness. To see this, we observe that |(A4,,v)| =
la(u,v)] < M |Jul|||v||. After dividing both sides by ||v||, we obtain the boundedness. Since
a(u,u) > 7 |lul|?, we have ||Ay|| |lul| > (Au,u) >~ ||lul|® &, and thus A, is injective.

Also by RRT, we have < f,v >= (f,v), with N fll e = HfHH, and so we only need to
solve Au = A, = f. It suffices to show A is onto.
Claim 2. R(A) is closed. This can be obtain through Cauchy-sequence arguments with the
aid of &2.
Claim 3. R(A) = H. If not, then there is a 0 # g € H such that g 1L R(A), and hence
Ay L g. However, 0 = (4,,9) = a(g,9) > 7 g]*.

Now, also because of &), we have |47 < %, and then we obtain the bound for w. O
Now, we return to the general problem

Lu=fe H'(Q), inQ,
u(x) =0, on 0f.

(DBV P)

Before discussing it, we look at the following baby example

—u” —u=sin(z), x € (0,7),

u(0) = 0 = u(n),
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which has no solution. To see this, we multiply both sides by sin(z) and integrate over (0, ),

and obtain i i
/ —u" sin(z) — usin(z)dxr = / sin?(x)dz.
0 0

Do integration by parts on LHS, we have

T=Tr

— / u(sin(z))” + usin(z)dz = 0,
=0 0

LHS = u(sin(z))’

which is impossible. On the other hand, the following initial value problem must have solutions

u”" = f(x,u,u),
u(0) = wy,
u'(0) = uy.
From the above discussions, one should keep in mind that (DBVP) may not always have

solutions and therefore, we need to consider the problem in a more thorough way.

Theorem 3.1.2. There is a constant og > 0 such that if ¢ > oo, then for all f € H=1(),
the following revised problem

Lou=f, in€,

u =0, on 082,

(DBVP)

has one and only one weak solution, where L,u = Lu + ou.
#ERA . We consider the bilinear form associated to L,:
Lo(u,v) = / [aijuiv; + biwv + (¢ + o)uv] dx, u,v € Hy(S2).
Q
Check:
e Boundedness of L,:

Lo (u,0)| < [llaslll [Vl [1V0]l, + |[b

_Ivullp [lvlly + Clello + o) llully o]l
<M HuHHé ||UHH3 ;
e Coercivity of L,:

La(u,u)z/\o/ |Vu|?dx — ||b
Q

2 2
vl lrdly, = llell Trelly + o fJully

2 2 1 |2 2 2
> [ [Vufdx = e[l = 5 |[F] 1l + (e~ el ul?

=32 Ao 112 2
=5 [1vukaxt (o= el - 5 7] ) .

2
and so we only have to take oy = ||c|, + 557 Hb” , and norm induced by ((-,))m;z-

Now, applying Lax-Milgram theorem, we are done. O
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3.2 Fredholm Operator Theory

In order to handle the harder problem
Lu=f, onQ,
(DBVP)
u =0, on 0f2.
We need Fredholm Operator Theory.

Definition 3.2. Let X and Y be Banach, T : X — Y linear and bounded. We say that T is
Fredholm if

o dimKer(T) < oo;
e Im(T) is closed;
e codimIm(T) < oo.

For such operators, we define ind(T) = dim Ker(T) — Codim Im(T), the Fredholm index
of T.

Theorem 3.2.1. Riesz-Fredholm Compact Perturbation Theorem If T' is Fredholm

and

K:X Y,

is compact. Then T + K s Fredholm and
ind(T + K) = ind(T).

This theorem has been proved in the course Functional Analysis (Graduate), and here
we only talk about how to use it. Recall that given u € Hg, £(u,-) induces a bounded linear
functional on H{, and because £ is a bounded bilinear form, we know L induces a bounded
linear mapping from H{ to its dual. Now, it is convenient to observe that to ask whether
(DBVP) is solvable is equivalent to ask whether Im(L) = H~', and whether the solution is
unique Ker(L) = 0.

Theorem 3.2.2. The operator L : Hy — H~"' is Fredholm with index 0.

1E8]. According to RFCPT and previous result for L, it suffices to show that the inclusion
I: H} — H™'is compact. Observe that I : Hj «» L? < H~' is the composite of two
canonical embeddings, where the first is compact embedding due to RKCIT, and thus we are
done. O

Corollary 3.2.1. Fredholm Alternative (DBVP) has a unique solution if and only if it is
solvable for every f € H™1.
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Question: What if uniqueness of L fails?

Let uw,v be smooth and compactly supported, then
/ Luv = / [a;ju;v; + biu;v + cuv)
Q Q

= /Q —(aigvi); u — (biv)iu + cou

= / L vu.
Q

Here, we call L* the formal adjoint of L, and L*v is considered as an element in H~!.
Theorem 3.2.3. Existence and Uniqueness Theorem for (DBVP)

1. Fredholm Alternatives: (DBVP) has a unique solution if and only if it has a solution for
all f € H=Y. (Already proved);

2. The subspace of H} consisting of weak solutions of (DBVP) when f = 0 is of finite

dimension, with dimension equal that of solution space of
L*v =0, in €,
v =0, on 0.

Or we may write dim Ker(L) = dim Ker(L*);

3. For general f, (DBVP) has a weak solution if and only if < f,v >= 0 for all v €
Ker(L*). Or we may write Im(L) = +Ker(L*).

iE8]. Recall that we have shown L : H} — H~! is Fredholm with ind(L) = 0. Similarly, one

can show that L* is also Fredholm with index 0. Now, we write
Hy = Ker(L) @ X,

H™' = Im(L)@P ",

with X;1,Y; closed. Let Ker(L*) = span{ey,--- ,ex} C H}, k = dim Ker(L*). By Hahn-
Banach, there are linearly independent fi,---, fi, € H~ ' such that < f;,e; >= d;;,.

Claim 1. span{fi, -, fr} N Im(L) = 0. If not, there should be v € H} such that Lu # 0
and Lu = ¢i f1 + -+ - + ¢ fx. Applying Lu to e;, we have

c; =< Lu,e; >=< L¥e;,u >= 0.

Claim 2. dim Ker(L*) < dim Ker(L). Because f; € H™' = Im(L) @ Y1, then there should
be u; € H} and y; € Y; such that f; = Lu; + y;. We claim that y;’s are linearly independent.
If not, there are dy,--- ,d, not all 0, and ), d;y; = 0, and hence

Z difi = Z d; L,
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where LHS € span{fi, -, fx}, while RHS € Im(L). By claim 1, LHS = 0, which contra-
dicts that f;’s are linearly independent. Thus k < dimY; = dim Ker(L). Similarly, one can
show the reverse.

Now, to show I'm(L) = +Ker(L*), we first observe that I'm(L) C *Ker(L*). Given u € H{,
and for every v € Ker(L*), we have < Lu,v >=< L*v,u >= 0. To show the reverse, we take
f € *Ker(L*). From Claim 1 and 2, we know H ' = (L) @ span{fi,--- , fr}. This implies

that there is r € Im(L), ¢1,- -+ , ¢ constants, such that
f=rtafit+-+efe=Lut+---,

for some u € Hi. Applying f to e;, we have ¢; =< f,e; > — < Lu,e; >= 0, and hence
f=relIm(L).
O

Example: Consider on Q = (0,7), Lu = —u" — u,

Lu=f, in{,
u =0, on Of).

(BV P)

For what f € H~! does (BVP) have a weak solution? Answer: f L sin(z).

Theorem 3.2.4. A user-friendly theorem Suppose Q bounded, v € H'(2) N C°(Q) and
u =0 on the boundary. Then u € H}(Q).

JER]. Just need to show ut € H(Q). By HW4, (ut —e)* € H}(Q). On the other hand

(ut — €)™ converges to ut in H'(Q). O

3.3 An Introduction to Homogenization

Suppose the thermal conductivity of a rod is given by a(z/e), where a(y) is a periodic
measurable bounded function withe period yo > 0. We also assume that Ay < a(y) < 1/,
for some Ay > 0. Suppose f is an L? function, and the temperature u of the rod is given by

Ut = (a(x/e)uﬁf);p + f('r)a VS (07b)7
u =0, in {0,b}.
Its steady state is then given by
—(a(z/e)uz), = f(z), x€(0,b),
u=0, in {0, b}.

When f, we multiply both sides by u, and after using integration by parts, we know that the
above equation has at most one solution. According to Fredholm Alternative, this equation

has solution for every f € H~'. We denote this solution by u., and wish to study lim._,q ..
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Boundedness of u. in Hj(2):

[ otarnae= [ romiae

and by ellipticity of a and Poincaré inequality, we obtain the following A priori estimate
[uzlly < [Ifll, C/A0- O

Accrording to Banach-Eberlein Theorem, and H} «» L? we know after passage to a subse-
quence, there is an ug € H} such that u. — ug weakly in H] and strongly in L2

Now, let v.(x) = a(z/€e)u.(x), we claim that after passage to a subsequence, v. — vy
weakly in H! and strongly in L?, which can be proved also by the A priori estimate (3. But
why v, € H'? According to the equation, we know its weak derivative is exactly f € L?.
Claim (Generalized Riemann-Lebesgue) For all h € L>°(R), periodic with period yo > 0, we

have v
Jo" hy)dy
Yo .
To prove this claim, we first study the simplest case: g(x) = xr, with I = (¢, d) some interval

h (f) A< h>=

€

in (0,b). Then applying h on g, we have

/C U h(e/)de = N / T e/ 1 0()

Yyo+c/e
=eN h(z)dz + O(e)
c/e
Yo
_ EN/ h(z)dz + O(e),
0
with N > 1 such that ¢+ Neyy < d < ¢+ (N + 1)eyg. We further have
Yo h d
LHS = NG%M + O(e)
Yo

=(d—c) <h>40(e).

Thus, the case for 7 is done, and so are step functions. For general g € L'(0,b), we already
know step functions are dense in it, that is, for all § > 0, there is a step function s such that

llg — s||; < 0. Now, we have

<

/Obg(x)h(:c/e)dx— <h> /Obg(a:)dx /Ob s(z)h(z/e)dx— < h > /Ob s(z)dx

+ (Al + 1< >1)llg = sll, -

Thus, we have proved the claim.
To see the convergence of v,, we observe that u. = v./a(x/€). Recall that LHS = u. is
weakly convergent in L? to uj, and so is RHS. According to the above claim and the fact

that v, — vg strongly in L?, we have RHS — vy < % > weakly in L2, and hence

Q=] =

vo(x) = = >u6(x)
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Recall in the weak sense, we have —v, = f, and hence uy must satisfy the equation

@) = f@), xe(0D),

3.4 Eigenvalue Problem

Baby Example: Recall in ODE, the equation

dX >

— = A, n X,

dt *

admits exactly one solution provided the initial value. A trial solution is a solution of the

form X = eMC. Inserting this formula into the equation, we obtain an algebraic equation
AC = )C.

Recall if A is symmetric, then
A
inf (Ax,x) = A1,
x£0xeR"  |x|?
will be the first eigenvalue of A. Reducing the space that we are taking infimum, we obtain
a sequence of numbers Ay, --- , \,, each corresponds a minimizer x1,--- ,X,.
We wish to apply this idea to
—(a;;(x)u;); +c(xX)u = Au, x € Q CC R,
oy [ @098 + )
u =0, x € 01

We always assume a;;, c bounded, and a;; strictly elliptic with ellipticity coeflicient A.

Definition 3.3. A weak solution of (EP) is uw € H}(Q) such that
L(u,v) = / a;;u;v; + cuvdx = )\/ uvdx, Yv € H} ().
Q Q

Let
L(u,u)

inf 5
u#0,u€H} (Q) ||u||2

A =

and for u € Hj ()

L(u,u)
R(u) = 5
[l
Lemma 3.4.1. \; is an eigenvalue of (EP).
1E8f. It can be shown, for any «
R(u) > —lel »

and hence A\; > —oo. Taking minimizing sequence and applying Banach-Eberlein Theorem, we
may find a minimizer v € H} (). v is a minimizer of R(-), and so if we define f,,(t) = R(v+tw),
for t ~ 0, and w € H}(Q), we have f/ (0) = 0, and thus direct computation tells us that v is
exactly a weak solution.

O
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Remark:
e All eigenvalues of (EP) must be real;
e )\; is the smallest one.

Lemma 3.4.2. Any eigenfunction that corresponds to A1 cannot change sign. A1 corresponds

to only one eigenfunction.

1R, If w minimizes R(-), then so is |u|. Thus |u] is still an eigenfunction. Apply De Giorgi-
Nash Theorem, we have u € C;.(Q2), for some a € (0,1). If u changes sign, then |u| must
be 0 somewhere in the domain. Now, using Harnack’s inequality, we know it’s impossible.
(If w > 0 on Q, then there is C = C(Q',Q, a;5,b;,¢) > 0 such that supg, v < Cinfop u for all
Vcc)

Suppose there are two eigenfunctions u; # us that correspond to A;, we consider g(c) =
(u; + cug,uz)r2, and find that when ¢y = —(uy,us)r2/(us2,u2)r2), g(cg) = 0, and hence
U1 + coug must change sign, which is impossible. O
Lemma 3.4.3. Let

Ay = inf R(u),
u#0,u€H uluy

then Ao > A1 is also an eigenvalue.

iER]. As before, we may obtain us as the eigenfunction corresponding A,. It can be shown
that us L uy both in L? and H}. O

For k£ > 1, define
)\k+l = inf R(u),
uEH&,u;ﬁO,uLLQul,m SUK
and one can similarly prove (A, ug)’s are all the eigenpairs.

Lemma 3.4.4. )\, — 00, as k — oo.

1ER]. It is easy to obtain
Ao / Vil < (el + M) / 2.
Q Q

Normalize [, uj = 1, we see if there is a bounded subsequence A, < M, we see uy,’s must
have weakly convergent subsequence in H} (strong convergence in L?). But uz’s are mutually

orthogonal, which makes the convergence impossible. O
Induce a new inner product on Hj(Q):
((u,0))" = L(u,v) + [|efl (u,v).

It can be shown that ((u,v))* is equivalent to the previous one, and we denote the induced

*
norm ||-||".
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Lemma 3.4.5. Let ¢}, be constants such that ||cyug||” = 1, then cyuy’s form an orthonormal
basis for Hg(S2).

1E8A. If there is u € H} () such that
0= ((u,ux))” = (A + llefl o) (u, ug) 2.
Because A, + ||c||, > 0, we know
(w,ug) 2 =0,
and by definition of Ay’s, R(u) > Ay for k > 1, which is impossible by Lemma (BZ). O
Lemma 3.4.6. u;’s form an orthonormal basis for L*(Q).

i, If u € H(Q2), then we are done by the above lemma. (Need to use ((u,uy))* =
(Ae + el ) (u, ug) r2.) Suppose otherwise, we recall Cg°(Q) is dense in L?*(Q), we set v,, such
a sequence. Then, by prior discussion, we may write

oo

Uy = Z(Um,uk)uk.

k=1

Also, it can be shown Y252 (u, ug)? < ||ull3, thus Y257, (ug, u)uy, is well-defined. We then have

oo
u— Z(uk,u)uk
k=1

<
2

o0
u — Z(ukv Um)uk
k=1

< lu = vmlly

2

— 0,

as m — oQ.

O

Lemma 3.4.7. Let (A, e) be an eigen pair, then there is some k > 1 such that A = A, and e

is in the eigenspace of \j.

1ER]. A corollary of previous lemma. O
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Chapter 4

Regularity Theory for Second
Order Elliptic Equations

4.1 L? Regularity
Goal: Let ) be bounded in R™, and
Lu = — (ai;(x)ui); + bi(x)ui(x) + c(x)u, x € Q.

Assume L is strictly ellptic with ellipticity coefficient A\g > 0, a;; € C*(Q) N L>=(Q), ,b;,c €
L*>(Q) and a;; symmetric almost everywhere. We wish to study how smooth the solution to

the equation Lu = f is, for proper functions.

Definition 4.1. Let Q2 be a domain, and Q' compactly supported in it. u is some real function

on Q. Then we define the i-th (i =1,--- n) difference quotient of size h is

u(x + he;) — u(x)

h —

x e,

where 0 < |h| < dist(Y,09Q) and e; is the unit vector with i-th entry 1. For notational
convenience, we set

Vhiu = (Viu, - V)T,
Theorem 4.1.1.  i. Suppose 1 < p < oo and u € WHP(Q), then for any 1 < |h| <

dist(2,00), we have

thuHL:D(Q/) =n ”quLP(Q) :

ii. 1 <p< oo, andu € LP(V) N LY(Q), and there is a constant C > 0 such that
IV ][ 1y < C. V0 < [B] < dist(€Y',09).
Then u € WHP(QV) with || Vullpyqn < C. (False if p=1.)
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iER. i Suppose first that u € WP (Q)NC*> (). Forall x € Q' and 0 < |h| < dist(Y,00),

we have

lu(x + he;) — u(x)] = / d(u(x + the;))

dt

i

1
/ hu;(x + thei)dt'
0

1
< / lui (x + the;)|dt|hl,
0

which forces

1
|Vhu(x)| </ |u;(x + the;)|dt.
0

Thus, we have

1
19l < ] Ve 10

< [ ([ mtniray)

= [Jul

Lr(Q)
and hence
R S -4 I Py

Now, for u € W1P(Q). By density theorem, there exists a sequence u*(x) in W1?(2) N
C>(Q) such that u* — w in W'P(Q) as k — oo. A simple application of Fatou’s

lemma gives us the result.

ii. Because V"u is bounded in L?(Q'), we see after passage to a subsequence, V" u converges
to some ¥ weakly in LP(£Y'), as h — 0. We claim that ¢ is the weak derivative of u. It

suffices to show for any test function ¢ in ', we have

/leias:—/ﬂ,u@,

which is obtained by taking h — 0 on both sides of the equality

// u(x + he;) — u(x) / u(x) ¢(x — hei) — d(x)

=12 () = - o

Now, weak Vu = ¥ € LP(€)), and the bound is immediately obtained using the weak
convergence.

O

Remark: In case of part i., we may consider a domain € in the upper half plane H = {x,, >
0}, and so ' CC 2 may be chosen to touch the boundary H N 9. The bounds hold true

for 1 <4 <mn—1 in this situation.
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Theorem 4.1.2. Interpolation Inequality Let Q be a domain with C*-smooth boundary.
For any eq > 0, there is K = K(eo,m, p, Q) such that for all 1 < € < e, integer 0 < j <m—1
and u € Wm™P(QQ) 1 <p< o0

Z HaauHLp(Q) <K |e Z ||aau||Lp(Q) +e m ||u||LP(Q)

le|=j le|=m

Remark: This helps one to establish a new equivalent norm consisting of only the function

itself and its highest order derivatives.

i8], We only give a proof for n = 1, Q = (0,1), m = 2, j = 1. Suppose u € C?[0,1]. By

mean value theorem, we have

and so
[/ (V)] < 3(lu(n)] + [u()])-

According to F.T.C., we have

and hence
1
()] < 3(u(n)] + [w©)]) + / (1))t
0
Integrate w.r.t. £ from 0 to 1/3 and 1 from 2/3 to 1, and see that
1 1
' (z)] < 9/ u(t)|dt +/ o’ (1) dt.
0 0

Thus,

1 p 1 p
(@) < 279 ( / |u|) ot ( / |u"|)
0 0
1 1
< 2p~lgp </ |u|p) +2rt </ |u”|p) , ©.
0 0

For v € C?[a, b], if we define u(t) = v(bt + (1 — t)a), we obtain a similar estimate

b op-1gp b b
[ < 28 [t o-ar [

W.T.S. for all ¢y > 0, there is such K such that if 0 < ¢ < ¢,

1 ooy < K (€08 ooy + € Nl oy ) -
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For 0 < e <1, let K, = 2P~19P, consider 2(K,/€)}/? > N > (K,/e)'/? > 1, and observe

1 N 4
[ =3[ e
0 =
. vk
< P py P "p
S KN [1|u| +Np/“u|

N N

1 1
<oz (L e [ )

P\ Jy 0

€0
191 o0y < B/P (| o + Nl 1) < K/ (e bl o + = IIulle) :

If 1 < e < ¢y, then by ©

Simply take K = K,/"¢,. O

Theorem 4.1.3. Interior H?-regularity Theorem Suppose u € H'(Q) is a weak solution
of Lu = f with f € L*(Q), then for any Q' CC Q, u € H*(Q) and

HUHH2(Q’) S ||f||L2(Q) + Hu||L2(Q) : (4.1.1)

1ER]. According to the interpolation inequality, it suffices to show

> 107l <€ (Il + i) -©

lee]=2

Why @ is enough? Take subdomain ' CC Q; CC Q, then @ holds true if  replaced by
Q. Further we take n € C§°(2) a cut-off function such that 0 < n < 1 and n =1 on Q.
Recalling from the HW, v = n*u € H (), and by definition of weak solution, we have

/ a;ju; (2nmu + n*u;) + biuin®u + cu’n® = / fnu.
Q Q
By strict ellipticity
LHS > )\0/ 2|Vl — c/ (nll V] + 7 ol | V] + 720)
Q Q

c 1
> )\0/ n?|Vul* — 2/ <6772Vu|2 + u2> —-C [ u?
Q Q € Q

A
> 20 772|Vu|20/ 2,
2 Q Q

RHSg;(/Q]f|2+/Qu2>.

The two estimates combined can lead to (E11).

and at the mean time

Now, to show @, we want to show

101 < 0 (110 + Nl
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Take n € C5°(£21) such that 0 < n <1 and n =1 on €', where Q' CC Q; CC Q. Letting
ve HYQ), and f = f — byu; — ¢, we have

/aijuivj:/fv.
Q Q

We further take v = V,:h (772V2u), then for small |h|, v is well defined in Q; and is compactly
supported. According to HW, we know v € H} (). Inserting v into the above equality, we

observe
—/Q%‘Ui (Vi" (1*Viu)); = —/QaijuN;” (n* Vi),
= /QVZ (aiju;) (nzVZu)j
= / (VZ(ui)aij(' + hep) + uiVZaij) (27]7]ij“ + nQVZ(uj))
Q

e

> Ao/Q PIVE(Vu)? = C [ 0 (IVR(VW) + [Vul[Viu] + [Vul [V (Vu)])

1951

2|vh 2 1 2 —h 2 |VZU|2
>0 [ VTP -0 [ 5 (@i + SA
Ql Q1

2 2 o2 1 2
o} o} 2 €

2 2

> 2o / PV VP2 -c [ v —c [ v
Ql Q1 Ql

Recalling f = f — bju; — cu, we have similarly

[ 2, I
Qf@ﬁ/ﬂ(ﬂ) +4€>

< en/ | Vi(Vu)]? +C (VZU)Q—FCE/(fQ-f—b?U?-FCqu)
Q I Q

§en/QnQWZ(Vu)F—i—C(/QfQ—F/Quz—i—/QWuF).

When € is small, we may apply 4. of Theorem (1), and then we are done because 0 <7 <1
and p=1on . O

Theorem 4.1.4. Higher Order Interior Regularity Let Q bounded in R™, and suppose
Lu = —(a;;(x)u;); + bi(x)u; + c(x)u

is strictly elliptic in Q, a;; € C™ Q)N L>®(Q), bj,c € C™(Q) N L>(2), where m >0 (when
m =0, no need to assume b;,c € C°(Q)), and f € H™(Q). Let u € H'(Q) be a weak solution
of Lu = f, then u € Hﬁ?fz(Q), and for any compactly supported subdomain ', we have

\Iulle,+2(Q,) SLee ||f||Hm(Q) + ||U||L2(Q)~
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iER]. Formally apply 9; to both sides of Lu = f, and obtain a new equation Lw = f . Check

that O;u is a weak solution to it. Iteratively applying the prior theorem, we are done. O
Corollary 4.1.1. Suppose a;;,b;,c and f are smooth on ), then u is also smooth on 2.

1ER]. Recall that by Sobolev Imbedding Theorem, we have

WF22(Q) — O™ 275 (Q),

loc
for m + 2 — 4 not an integer. O

Now, we wish to study the global regularity of the solution. Before that, we study the

effect of the boundary geometry on functions.

Definition 4.2. Given a domain Q, we say its boundary 9Q is C*-smooth for k > 0 if for
all xyg € 0N), there is r > 0 such that after rotating the domain in R™ w.r.t. xg

o B.(x0)NQ = {x € B.(x0); p > ¢(1," ,7p_1) = ¢(X')}, with ¢ some C*-smooth
function;
e 00N B, (x0) ={x € B,(x0); z, = ¢(x)}.

Write xg = (29, ,2%) = (x}, z

0
n

). With the above defintion, we may locally straighten
0f) near xq by setting
®: B,.(x9) — R"
x = (X' = x0, 2, — 0(X)).
Thus, ® is C*-smooth on the ball, and it is clearly injective according to its defintion. (We

denote its image by N*.) Its Jacobian is

1 0 - 0

0 1 0
Dd,

—¢1(x) —¢a(x) -+ 1
Thus, the volume form |det(D®*D®)|dx = dx and so the reparametrization ® is equiareal.

Moreover, for u € C'(Q)NWP(Q), we may define a(y) = u(®~!(y)) for y € N, and obtain
the bound

I¥yillrey = [[(D22Y) (V) (@7 (9)

Lr(NT)
-1

< DB ey 10l 5 0

<C HVXU’HLP(BT(XO)WQ) ’

and reversely, we also have

”vxu”Lp(B,,,(xo)mQ) <Gy Hvyﬂ”Lp(NJr) .
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After a density argument, we know W' (2N B,.(xo)) is equivalent to W'?(N*) by the map
u +— @. Similarly one can show W, (Q N B,(xo)) is equivalent to Wy?(N*t) by using the
density of C5°() in W, ?(Q) for general €.

Theorem 4.1.5. Trace Theorem Let Q be bounded with C*-smooth boundary. Then there

s a linear and bounded operator
T:W'P(Q) — LP(09Q), 1 <p < o0
such that
1. Tu=u|,, if ue WP(Q) — C(Q);
2. Generally, we have the bound

ITull Lo o0y < C llullyrngg) > w € WH(Q).
(@)

Tu will be called the trace of u on 0f).

JEP]. Recalling that 9Q € C! implies that C1(Q) is dense in WP?(Q), we start with a
function u € C(Q). Let B,(xo) be a small ball centered at xo € 9 such that we have a
straightening map ® : B,.(x¢)N — N7 (the same meaning as before.) By prior arguments, we
know @ induces a canonical equivalence between W'?(A) to W'P(®(A)) for any subdomain
A C B,.(x0) N Q, and hence only have to consider the problem on N*. By compactness of
B,.(x0) and because ® is a C'-diffeomorphism, there should be some small € > 0 such that
the set {y, = ¢} N N* is simply connected and its projection to {y, = 0} covers B, »(0’).
According to F.T.C., we have

t
u(y’,0) = u(y’,t) — / Uy, (y',8)ds, 0 <t <e,
0

and so
uy', ) < 27 (|u<y',t>|p n

€ p
/ uy, (y', s)ds ) ,0<t<e.
0

Therefore, we have

217 € €
/ |u<y',o>|pdy'g( / / lu(y', )P dy’dt + ¢ / / |uyn<yxs>|”dy'ds)
B,/2(0") € \Jo Jya=cynn+ 0 J{yu=cynn+

<Gy ( ey |Vurp>-
Q Q

Because 0f) is compact, we obtain the bound all over the boundary. Now, for general u €
WHP(Q), one may first find a sequence of C'*(Q) functions u,, € C*(Q) that approximates u
in WHP(Q). According to the above bound, we know un}m is a Cauchy sequence in L?(092),
| oq With limit taken in LP(992). After a density

argument, we know the operator T is well-defined and we also have the bound in item 2.. In

and hence one may define Tu = lim,, o uy,

item 1., for u € WHP(Q) < C°(Q), we simply use the uniform convergence. Notice this case

happens when p > n. O
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Theorem 4.1.6. Suppose Q is bounded with C*-smooth 9Q, u € W'P(Q). Then u € W, *(Q)
if an only if Tu = 0.

FER. By definition of W, (), u can be approximated by a sequence of C§°(Q) functions,
whose traces are 0. By trace theorem, we know that Tu = 0 because T is continuous.
Reversely, if Tu = 0, then there is a sequence of C*(Q) functions wu,, such that u,, converges
to u in WHP(Q) and Tw,, converges to 0 as n — co. After choosing a proper parametrization,
we reduce the problem to the case where Q = R"~! x R, the upper half plane, and 9 is the
hyperplane {y, = 0}. Consider a nondecreasing cut-off function on ¢ € C5°(R,) such that
¢=1on (0,1) and $ =0 on [2,00), and define

U (Y) = um(y)(1 — ¢(kyn)), k,m > 1.

By HW, each 4y ,,,(y) are in Wol’p(Q). It then suffices to show iy, — u, in WHP(Q) as
k — 0o. Observe that

Vyrtigm(y) = Vyrtun(y),
and

Dy, Wi (¥) = Oy (¥) (1 = d(kyn)) — k' (kyn ) tim (y)-

Therefore, we have
1/p
Vit = Vil < ([ 100 (9)0000) + k6 G 3y

1/p 1/p
( / 1By, tm(y kyn>|de) +( |k¢'<kyn>um<y>de)
Q
2/k 1/p
</ / k”Cpum(y’,yn)lpdy’dyn>
Rn—1
FT.C. 2/k P l/p
<o) + ( / / e dy’dyn>
Rn—l

o 2/k e

Minkowski+Holder p—1

< o(1) + Ck (//k s dS) 18y, tm | Lo en—1 0,278
1

um(y’,())—i-/ Oy, U (y', 8)ds
0

<C Haynum”LP(]R"—l><[0,2/k])

L.D.C.T.
— 0,

as k — oo. O
Now, we arrive at the gate to investigate the global estimate. Recall
Lu = —(a;;(x)u;); + bi(x)u; + c(x)u.

We assume that a;; € C1(Q), b;, ¢ € L=(2), 9Q € C? and L is strictly elliptic. If the boundary

condition is Dirichlet, it is reasonable to ask whether the solution is globally H?2.
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Theorem 4.1.7. Suppose u € H(Q) is a weak solution of

u=f, inQ,
u =0, on 0L,

(DBVP)

where f € L*(Q). Then v € H*(QY), and we have

||u||H2(Q) Sae.r ||U||L2(Q) + ||f||L2(Q) .

1E7]. Let x;,4 = 1,--- , N be finitely many points on 9 and {(B; := B,,(x;),®;)} be an
atlas of 9Q and By CC € such that Q c UY B;. By interior regularity, the bound on By is

automatically obtained, and the central issue is to obtain the bound

D 10Ul ooy S 1F L2y + el o)

lee|=2
Here if the above estimate is true, then one may apply interpolation inequality to reduce the
H'-norm of u to its L?-norm.
To show ), we take 1 a test function on By, (x;) such that 0 <n<1and n=1on B;.
Apply L on nu =: u, we have

L(u) = —(aij(nu)i); + bi(nu)i + cnu
=nf + trash
= fecL*Q),0
where by computation we know “trash” has its L2-norm bounded by C'|lu| .. Moreover,
we have © = 0 on 9(Q2 N By,,(x;)). The idea is that for k = 1,--- ,n — 1, we can as before

do difference quotient (we may reduce the problem to the case that the domain is exact the

upper half plane)
u;(x + heg) — u;(x)
h

will be obtained by using the equation

si=1,---,n.

8%u
ox2

The remaining term

—anngig = blahblah,
where a,,(x) > Ao by strict ellipticity.
Let ® be a C?-smooth diffeomorphism that transforms By, (x;) N Q into a subdomain
N, of the upper half space {y, > 0}, and By, (x;) N 0Q = {y,, = 0} NN, . We also denote
®(B;) by N;". For any v € H}(Ba,,(x;) N ), we have an induced map v +— 0 = vo ®~ 1. We
alsoset & =uo® !, ay = g—-’;’:aij o (Iflg—i’;, and by = %bi o ®~1 and so are ¢, f. Since @ is
a weak solution to O, we have

/ aijaivj + biﬂﬂ) + cuv = / f’U

QN B2y, QN Bz,

= / QU0 + b0 + cuv = / of.
NS Ny
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Observe that ay, € C* (Nij), and by, & € L>®(Q). By linear algebra and that ® is nondegener-
ate, we know 4y, is still strictly elliptic.

Now, we have reduced the problem into the case that the boundary is part of the hyperlane
{y, = 0}. Notice that N;" has positive distance from ON, N {y, > 0}, and so in directions e,
for k=1,--- ,n—1, we may do as before difference quotients and obtain the L?(N;")-bounds
for 0,0ku with (i, k) # (n,n). By interior regularity, we may pointwise do differentiation on

the equation (here we need ® to be C?), and obtain

- — (@)1t — agrlig — f + trash
nn

O

Theorem 4.1.8. Higher Order Global Regularity Suppose L is strictly elliptic, a;; €
C™Q), m >0, bj,c € C™(Q), f € H™(Q), 90 € C™*+2, then any weak solution u € H}(£2)
of the (DBVP) must be in H™2(Q), and

H“||Hm+2(9) Seo lf] am@) T ||u||L2(Q) :

Corollary 4.1.2. If a;;,b;,c € C®(Q), f € C®(2), 9Q € C™, then u € C>=(Q).

Epilogue of L?-theory: (De Giorgi-Nash-Moser theory) Suppose 2 bounded, a;;, b;, ¢ bounded
functions and L strictly elliptic.

Theorem 4.1.9. Suppose u is a weak solution of Lu = f in Q with f € L1(Q), ¢ > 5. Then

1. (interior regularity) For all Q' CC €, there is some a = «a(n,L,,Q,q) such that
u € C(Y), and

||u||cn(§i') SLQn ||u||L2(Q) + ||f||Lq(Q) ;

2. If u € H}(Q), then u € L>(Q), and
||u||L°°(Q) SL Qg ||u||L2(Q) + ||f||L<1(Q) ;

3. If u € H}(Q), and 0Q € C?, then there is some o = a(n, L,Q,q) such that u € C*(Q),

and

[ull ooy Snz..a 1ell 2 @) + 111l L) -

Neumann-Robin Boundary Value Problem: We consider

Lu=f, in ©,
(RBVP)
a‘%‘ + B(x)u=0, on JQ,

where 714 = Vu - (a;j)nxn7, with 77 the unit outer normal field on 0€2. A question is that
how can one define its weak solution? Formally, we suppose everything is smooth, and for
v e CHQ), we have

/ —(@iju;) v + (biu; + cu)v = / fu.
Q Q
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Integration by parts gives that

LHS = / AUV —/ (aijuiﬁj)v—l-/(biui +CU)’U = / f’U, @
Q o0 Q Q

Definition 4.3. We say u is a weak solution of (RBVP), if u € H'(Q) and & holds for all
ve H (Q).

From now on, we assume 982 € C', a;;,b;,c € L>*(Q), § € L>(99Q) and L strictly elliptic.
Existence: Full version of Fredholm Alternatives hold; Uniqueness holds if b; = 0, ¢ > 0 and
B >0.

Theorem 4.1.10. Global H2-regularity Suppose 9Q € C?, a;; € CY(Q), b;,c € L>(Q),
B e CHIN), u is a weak solution of (RBVP). Then u € H*(Q), and

lull g2y S 11 p2@) + 1l L2y -

For more information, see Tag der Priifung’s Thesis.

4.2 [P-theory for Elliptic Equations (1 < p < c0)

Let © be bounded, and

Lu = aijuij + blul + cu,
with a;; € C°(Q), b;,c € L>(Q). We also assume that L is strictly elliptic on the domain.
Definition 4.4. We say u is a strong solution of

Lu=f, in(,
u =0, on 082,

(BV P)

if
o ue W AW (Q);
e PDE holds pointwise on §2.

Fredholm Alternative: Suppose 92 € C?, then uniqueness of (BVP) is equivalent to the
existence of strong solution for all f € LP(Q). We will not prove this fact here.

We also have the following estimates (without proofs).
Theorem 4.2.1. Interior LP-estimate Let u be a strong solution of Lu = f, then for any
Q' CcC Q, we have
lully2r @y Snpzoa 1fllLe@) + 1l -
Theorem 4.2.2. Global LP-estimate Let u be a strong solution of Lu = f and 00 € C?,
then we have

||u||W2=P(Q) Snp.L,2 ”f“LP(Q) + ||UHLP(Q) :
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LP-regularity Theory

Theorem 4.2.3. 1. Suppose 9Q € C*, u € W?P(Q) is a strong solution of (BVP), f €
LI(Q) for p < q < oo, then u € W>9(Q) N Wy 4(Q);

2. If u € WP(Q) is a strong solution of Lu = f, f € L1(Q), with p < q < oo, then
u € WIQOC"(Q)

JERR . 1. (Bootstrap Method) Consider

a;;v;; +bv; = f—cv, onfQ,

v =0, on 0f).

(4.2.1)

We want the right hand side of the equation to be in L?(2). To see this, we recall by
Sobolev Imbedding
W2P(Q) — L (1),

for

_ n’i’;p, if n—2p >0,
P1=

arbitrarily big, ifn —2p <0.
Then p; > p and hence u € LP*(Q). If p; > ¢, then RHS of the PDE is in L9(Q2). Thus,
the equation (=20) has “c = 0”7, which implies that it has uniqueness of solutions both
in LP and L7 settings. According to Fredholm Alternatives, (B2211) has a unique strong
solution v € W29(Q) N W,9(Q). Clearly, v is also a strong solution in L” setting, and
hence by uniqueness of solution u = v, and thus v € W24(Q) N W, 4(Q). If p < p; < q,
then RHS of PDE is in L”* (). By above arguments, we have u € W21 (Q)NW,** ().
Because
W2PH(Q) — LP2(Q),

where p,, is defined similarly to p;, with p replaced by p,_q1 for n > 2. Thus RHS of
PDE is in Lmi“(q’pZ)(Q). By repeating the above arguments, we have either p, > ¢ for
some k > 2, or p; an increasing sequence bounded by ¢. It suffices to consider the latter
case. Observe that both sides of

Wy
n — 2pk

Pe+1 =

must have a limit. The limit of the sequence p., then satisfies the equality

NPoo

poo:mv

and so p,, = 0, which is impossible, because each p, > 1;

2. For any ' CcC Q, we take n a cut-off function that is compactly supported on , and

equals 1 on €. Let v = nu, then we have
Lv = Qi Vij + ijj +cv = 77LU + Q575U + QCLij’l’]in + bmlu, E.s
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and v‘ml =0for O cC Q CcC Q and 9 € C*®. Observe u € W?P(Q) — LP*(Q),
and u; € WhP(Q) — LP1(Q) for
o s ifn—p>0,
p1 =
arbitrarily big, ifn—p <0.
Then p < p1 < p1, and thus in &, RHS € L™"@PD(Q). If p; > ¢, then we are done.
Otherwise, we have, according to 1., v € W2P1(€,), and thus u € W*P1(Q)’). Similar to

1., we may do bootstrap, and obtain the result.

O

Theorem 4.2.4. Higher Order Regularity

1. (Global Version) Suppose 0 € C™*2, f € W™4(Q) for 1 < q < oo with m > 1.
aij, bi,c € C™(Q). If u € W2P(Q)N Wy P(Q) (1 <p < o0)is a strong solution of

Lu=f, inQ,
u =0, on 0f).

Then v € WHm4(Q);

2. (Interior Version) Suppose f € W™4(Q), a;j,b;,c € C™(Q), u € WP(Q) is a strong
solution of Lu = f, then u € W">9(Q).

loc

Schauder Theory for Classical Solutions

We consider the operator Lu = a;;u,;+b;u;4cu on bounded domain 2, where 02 € C?te,

and a;;, b;,c € C*(Q).
Fredholm Alternative: Consider

Lu=f, on{,
(BVP)

u =0, on 0f).

Then uniqueness of C**(Q)) solution for (BVP) is equivalent to the existence of such a
Q).

solution for every f € C%(

Remark:
1. Uniqueness prevails if ¢ < 0 on Q (Maximum Principle);

2. Existence under weak condition (see Gilbarg Trudinger): Assume a;;,b;,c € Cf.(2) N
L>(Q) and strict ellipticity of L; 0f) satisfies exterior sphere condition at every point
and ¢ < 0 all over the domain. Then for every ¢ € C°(9Q) and f € C2, N L>(Q), there

loc

is a unique u € C°(Q) N CEE*(Q) solving the equation.
Theorem 4.2.5. Schauder Estimates
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1. (Interior Estimate) Suppose u € CE1%(Q) is a solution of Lu = f € C*(Q). Then for

loc

any Q' CC Q, we have
||U‘|02+a(ﬁ) Sa.n. L0 HfHCa(Q) + HUHca(m ;
2. (Global Estimate) Suppose 02 € C?*@, u € C*+(Q) is a solution to the (BVP), then
[ull gz4a @y Seamnr.o 1fllca@y + lullga) -

User-friendly Regularity Theorem

Theorem 4.2.6. 1. (Global Version) Suppose a;;,bi,c, f € CQ) and 0Q € C**e. If
u € WP(Q)NW, () (1< p<oo)isa strong solution of (BVP), then u € C***(Q);

2. (Interior Version) Suppose aj,bi,c, f € C2.(Q), u € WEP(Q) is a strong solution of
Lu = f, then u € CEE*(Q);

loc
3. Let Au = —(a;ju;)j+biu;+cu. Suppose A is strictly elliptic on the domain, a;; € C*(S),
bi,c € L°(Q). Assume u € H}(Q) is a weak solution of
Au=f, on ),
u =0, on 012,

where O € C?, and f € LP(Q), with p > n2_f2 forn >3 (arbitrary if n = 1,2). Then
u e WP (Q) N W, P(Q);

4. Suppose conditions in 5., a;; € C'T(Q), b, c, f € C¥Q), 00 € C* (0 < a < 1).
Then u € C?+(Q).

JERf. 1. For any ¢ € (p,o0), we have f € C*(Q) — L(Q). By Global Li-regularity, we
see

u € W2(Q) — C*4(Q).

Thus, f — cu € C*(Q). Now, consider

a;;vi; +bv; +cv=f—cu, in§,
J =] &
v =0, on 01,

Observe that the problem & has uniqueness of solution because “(c = 0)”. According
to Fredholm Alternative (Schauder Setting), it has a unique solution v € C1*(Q). It is
evident that v € W2P(Q) N W, ?(Q) is also a strong solution of &®. Also by uniqueness

of solution, we have u = v;

2. For any Q' CC (), we take a cut-off function n on 2, such that 0 < n < 1 and equals 1
on €. By LP-interior regularity, we have u € W29(Q) < CQ_E(Q) for any g > 1. If we

loc loc
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choose g to be large, we have u € CZIOJC““(Q) Let @ = nu, we then have a new equation

Lu =nf + a;jni;u + a;(niw; + nu;) + biniu € C*(Q), on Q,
u =0, on 0f).

Thus @ € W2P(Q) N W, *(Q) is a strong solution of the above equation. By 1., we know
u € C?*T*(Q), which implies that u € C2L*(Q);

loc

. When p > 2, then f € L?(Q), and so by H?-global regularity, we have u € W22(Q). We

claim u is a strong solution in this setting: For any v € C§°(f2), because u is a weak

/ a;;u;vj + buv + cuv = / fo.
Q Q
Recalling what we did in HW, we have

solution, we have

First term of LHS = / —(azju;) ;v
Q
= / [—(aij)jui — aijui]v.

Q

Replacing v by an approximation of identity, we see
—aijuij + (bz — (aij)j)ui +cu = f, a.e.
Now, LP-regularity theory gives the result. When 1 < p < 2, we define
Av = —(aijvi;) + (bi — (aij);)vi,

and consider
Av=f—cuc?(Q) inQ,
v =0, on 01,

o
By Fredholm Alternative, % has one and only one strong solution v € W2?(Q)NW,*(Q).
Is v an H}-weak solution?

— v € L*(Q)? Recall that W22 < L9(Q), where ¢ > . But p > 2 will

evidently imply that ;

— Vv e L*(2)? Observe that Vo € WHP(Q) < L"(Q) for r > 2. But we also have

SE > 2
n—p —

— Tv =0 in H'-sense. Because dQ € C', we have that C*>(Q) is dense in W27 ().
Thus, there is a sequence v, € C°°(£)) that converges to v in W2P(Q) — H(Q).
Thus, by continuity of trace in H'(Q), we have Tvy = vi|,, — Tv in L*(09Q) as
k — oo. But v € W, *(Q), we have Ty, = vk|8Q — 0 in LP(2) as k — oo. After

passage to a subsequence, we have Tv = 0 a.e., which implies that v € Hj ().
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Because v is a W27 strong solution of Av = f — cu in Q, we have for all w € HZ ()

[ = [ =

where by old HW, we have LHS = fQ a;;u;w; + byu;w. Thus v is a weak solution of

Av = f — cv. Because “c = 0”7, we have uniqueness, and hence u = v;

4. Apply 3. and 1..

Remark:

e f € LP(Q) induces a linear and bounded functional on H}(Q2). Define for v € HJ(Q2) —
Jo, fv, we have the following bound

/ ol < IF1L Nl
Q

Recalling Hj () < L7(2) with ¢ > 2% we only have to show p’ < ¢g. Observe

P 2n
p—1"n—-2
is equivalent to
S 2n
p*n+2’

which is exactly the assumption on p;

e If B.C. is Robin/Neumann
holds if 8 € C*T(9R).

2+ fu = 0 on 99, then 3. holds if § € C*(99) and 4.
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Chapter 5

Function Space Theories for
Second Order Parabolic

Equations

Let € be bounded, and 0 < T < oo, we define Qr = Q x (0,7), Sr = Q x (0,7) and
Ly = Sy UQ x {0}. A parabolic operator defined on the domain is of the form

ou
Mu=—+A
b 8t+ “

where
Au = —(a;;(x,t)u;); + bi(x, t)u; + c(x, t)u.

We say M is strictly parabolic on Qr if there is Ay > 0 such that

(aij(x,t)) = Xolpxn, a.e. on Q7.

5.1 L2-theory for Parabolic Equations

Definition 5.1. Anisotropic Sobolev Spaces
e Fork > 1, we define
ng’k(QT) ={u e LP(Qr); weak 8;"8t5u € LP(Qr) for || +2[8] < 2k},

on which we may introduce a norm

1/p
p
lullyzergm) = > Hagafu @ |
loe|+2]8]<2k !

e Forl, k=0 orl, we define

W, (Qr) = {u € L"(Qr); 0Zu,8u € L*(Qr), laf < 1,8 < k}.
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Remark:
L W2t = {u,us, Vieu, Viu € LP(Qr)};
2. When [ = k =1, then W' (Qr) = W"?(Qr);

3. We say

o Lk o o
W, (Qr) = closure of C*(Qr) functions with restriction 0 on Sr in the space W,}’k(QT)-

o Lk
Theorem 5.1.1. Density Theorem If 9Q € C*, then all spaces above (except W, (Qr))

have dense subset C*°(Qr).
Theorem 5.1.2. Imbedding Theorem
1. Suppose 1 < P < co. Then
W, (Qr) = C°([o, T]; L (%)),

that is, for any u € W' (Qr), the function t € [0,T] — u(-,t) € LP(Q) is continuous,
and
s 0 Dllogay € 0+ U gy
2. Letk>1,9Q € C? and u € Wi"*(Qr). Then
u e CO([0, T]; H*71(Q))
us € CO([0, T); H~(52)

OF 1y
atkfl

Moreover, these inclusions are continuous.

€ C%([0,T; H'(Q)).

8. 1. Let u € C>®(Qr), we have
d/ /d
— w(x,t)[Pdx = [ —|u(x,t)|Pdx
o [ orac= [ Suen
= [ Phute s sign(u)d.
Q

where p > 1 makes sure the above equality. Now, for any 0 < s,t < T', we have

t
/|u(x,t)|pdx—/|u(x,s)|pdx§p / /|u(x,7)|p1|ut(x,7)|dxd7
Q Q s Ja
» p—1

o ([ )" ()’

<pllul

p
Wl (Qr)
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Observe by continuity,

/T lu(x,t)|Pdxdt = /OT </Q |u(x,t)|pdx> dt
:T/Q|u(x, s)[Pdx,

for some s € [0, 7). Therefore, we have

1
/ lu(x,t)[Pdx < 7 QT| u(x, t)\dedterHuHWM or)

p
= (p + 1/T) HuHWI?’l(QT) 3

and thus we have the estimate. A density argument show that this is true for all elements

in WZ?’I(QT);

. It suffices to show
W3 (Qr) — C°([0,T]; H** ().

To see this, we need

Theorem 5.1.3. Extension Theorem For all Q@ CC ', we set Q. = Q' x (0,T).

Then there is an extension operator
2k k o 2K,k
/
E: Wp ’ (QT) — Wp (QT))
such that

— FE is linear and bounded;
— Eu|Qt = u;
— BEu =0 near S7.

Suppose u € C*(Qr), and let 4 = Fu, we have

d

Val? = /2Vu~vu
dt | | o '

QI

For all 0 < t,s <T, we have

|Vu(x,t)|2dx/ |Vu(x,s)|2dx§2/ | At
Q/ Q/ ’

T

s/ aaf+ [

< lull , 2
W2 (QT)

< Cllullwzgp -
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Taking s € [0, 7] such that

1
|Vi(x, s)|?dx = — |Va|?
Q/ T Q{I‘
L2
< T ||u||W22’1(Q/T) )

we then have
2 2
[ 1vutx ) ix < ©/T +C) ullyza o, - € 0.T)
Combining this estimate with the one from 1., we have

”u('at)HCO([(),T];Hl(Q)) S HUHle(QT) , Vu e Cm(@)-

A density argument shows this estimate also hold in W' (Qr), which shows the case

when k£ = 1. Now, for k£ > 2, by what has been proven

i )y S Nz -

But for dyu € W' (Qr), we still have the above estimate. What’s more, we have

s 02 1) sy S 10Ul gy ] +2 < 2k,

which exhibits that

vefo.1) ull 210y S Nullywzrrop -

Dirichlet Initial Boundary Value Problem

We consider the following equation

%—f—Au:f(th)) on QT’
(DIBVP) u(x,0) = ¢(x), x e,

u =0, on St,

where M = % + A is strictly parabolic.
Our central issue is the existence and uniqueness of the solution to (DIBVP). To this
end, we further assume that a;;,b;,c € L=(Q7r), f € L*(Qr) and ¢ € L*(Q).

Definition 5.2. We say u(x,t) is a weak solution to (DIBVP) if

o 1,1

o ue W, (Qr) and u(-t) =% 6(-) in L*(Q);
0 1,1
o Forallve W, (Qr), we have
/ [urv + aijuv; + bju,v + cuv] = fu.
T Qr
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Remark: The above integral equation is equivalent to that, for any ¢ € [0, 7]

/ [uv + ai;uv; + biugv + cuv] = fv,ve V(E/;J(QT).

Qr Qs

To see this, we take 7 a sequence of functions in C*°([0,7]) such that n, = 0 on [¢,T7,
0 < mp < 1 and n(t) b 1, for all t € [0,f). Now, replacing v by vn; and a simple
application of L.D.C.T. will show this fact.

Energy Estimate (A priori estimate)

Taking v = u, we have

/ UgU + QUG + byuzu + cu® = fu7 <
T Qr
We claim that
1
/ utu:</u2(-,f)—/¢2>a
T 2 Q Q
o 1,1

which is clear to see when u is smooth. For general u € W, (Qr), recalling its definition, we
may choose a sequence uy in COO(@) such that u; vanishes near St and u, converges to u
in the ambient space. Using the norms, we know the integrals also converges.

Returning to *&*, we have
1 1
/ u? (-, 1) — / &% + Xo |Vyul? < / (fu—biuu — cu2)
2 Ja 2 Ja Qi Qr

2 2
+u 1 b|
S f 5 +/ 6|qu|2 + 1 / u2|b|2 + ||C||L00(QT)/ U2.
Qt Q7 “Jar ¢

T

Take € = Ag/2, we have

1 A 1
/ u?(x, D)dx + =2 |V u(x, t)|*dxdt < / P*(x)dx + C u?(x,t) + f2(x, t)dxdt,
2 Ja 2 Q:r 2 Jo Qr
which shows that
max / u?(x, t)dx+)\0/ |Vu(x, t)|?dxdt <p, / ¢2(x)dx+/ u?(x,t) + f2(x, t)dxdt, Re
Q Q

t€[0,T] T T

We would like to call
max / u?(x,t)dx
Q

t€[0,T)
mathematical energy, and

/\0/ |V u(x, t)|?dxdt

interfacial energy.
We have a further result: For ¢ € (0,71, if we set g(t) = |,

o, W (x,t)dxdt, then we have
that g € AC([0,T]), g(0) =0 and

g(t) < Cg(t) + /Q P+ C g f2<Cgt) + R, t—a.e.
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Therefore, we have
(e™“g(t))" = Re™",

which shows that
(et —1)R.

Ql~

g(t) <

Inserting this into %@, we obtain

max /uZ(x,t)dxdt +/ |Vu(x, t)2dxdt < 2e°T (/ #*(x)dx + C fA(x, t)dxdt)
Q QT

te[0,T] -

Theorem 5.1.4. Uniqueness of Solutions With the above energy estimate, we know that
there is at most one weak solution to (DIBVP).

Existence: Galerkin Method

Special Case: Eigen-expansion method. Consider

— Au =0, on Q x (0,00),

u =0, on 0f),
u(x,0) = o(x).
To solve this problem, we set u(x,t) = X (x)T'(t), and obtain
T'(t) AX(x)
= =—-\t>0 Q
TM ~ Xeo | TTUEET

which reduces the original problem to an eigenvalue problem.
Let L be autonomous (independent of time ¢), and b;’s are 0, that is, Lu = —(a;;(x)u;); +
c(x)u. Suppose L is strictly elliptic on the domain, and a;j,c are bounded. Now, we set
Mu = a“ + Lu, with L defined above, in the parabolic domain Q7 = 2 x (0,7"). We consider
the followmg problem

Mu = f(x,t) € L*(Qr), (x,t) € Qr,
(IBVP){ u =0, on Sr,
u(x,0) = ¢(x) € L*(Q), xe.

Definition 5.3. We say u is a weak solution of (IBVP) if
o 1,1
eucW, (Qr);
o 1,1
e For every v € W, (Qr), we have

//utv—ﬂ—a”uvj—i—cuv //fv

Lu = MAu, in Q,
(EP)
u =0, on Of).

Consider
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According to previous results, we know it admits a sequence of eigenvalues
A< A< A< — 00,
with corresponding eigenfunctions
e1(x) > 0,ez(x), -

where [le|;2q) = 1, and ex Lyzgpny € for k # 1. The inner product on Hj(€2) is redefined as

(u,v)) = /Qaijui?fj + <C(X) + ||CHLQO(Q)) uv.

Fix t € [0,T], we write u(x,t) = > -, ck(t)er(x), and similarly f(x,t) = >, di(t)ex(x).
Now, by the equation, we can formally write
D (1) + Meer(t)) en(x) = D di(t)er(x),
k=1 k=1
which gives

e (t) + Ager(t) = di(t), t€]0,T7],

cr(0) = (¢, er)r2(0)-
Observe that Ay, > A1 > 0, k > 2, we have

t
cx(t) = e (g, ex) 2(0) +/0 e M=), (s5)ds.

Theorem 5.1.5. Existence of Solution Suppose f € L*(Qr) and ¢ € H}(Q). Then

Z cx(t)ep(x) = u
k=1

o 1,1

converges in W, (Qr). Then u is a weak solution of (IBVP). Moreover, u € C°([0,T]; H}(2)),

and
t—0

u(-,t) — o()
in Hi().

1ER]. We will show this result in three steps.

Step 1: Because f € L*(Qr), we have f(-,t) € L*(Q) for almost every ¢ € [0,T]. By expansion,

we have

Fe) = di(Den(x)

in L*(Q), where dy(t) = (f(-,t), ex)r2(0). To each m > 1, we set
fn(x,1) = di(t)ex(x), (x,1) € Qr.
k=1
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Step 2:

Then

T
= M = | [ 1= 1P

/|fm (x,1) (x,1)] dx</2f72n(x,t)+2f2(x,t)dx
)

but

< / 4f2(x,t)dx € L*(0,T),
Q
we then may apply L.D.C.T., and find that f,, converges to f in L?(Qr) as m — oc.

Since f € L*(Qr), dy € L*(0,T), we know

t
cr(t) = e Mo, en) r2() +/ e =9, (5)ds
0

is absolutely continuous on [0,7], and ¢, € L*(0,T) exists in both a.e. — classical &

weak cases.
o 11
Define u,,(x,t) = Y-, cx(t)ex(x) € W, (Qr) the truncated version of u. Then we

claim that wu,, is a weak solution of
Mum:fm(xat)’ (X’t) GQTv
U = 0, on St,
U (%,0) = ¢ (%) = 2530, (¢, €x) L2 () €k ().

Observe that for almost every ¢t € (0,T), u,,(-,t) € Hj (£2), we have

H:_ ch )\kek Lek H— /\kek)

= (di(t) — (1) ex(x)
k=1
— fm(x7t) _ aleT(txat)? X € Q

o 1,1
Now, applying a general v € W, (Qr) on both sides, we have (because for almost all ¢,

v € H}(Q), we have 1.B.P.)

[@;; (%) (U )iv; + c(X)umv] (x,t)dx = fm(x,t) — um (%, t) v(x, t)dx.
J A »

Thus, an integration over (0,7 gives that u,, satisfies the PDE in the weak sense. As
for the initial value, we have

m

tm (- 8) = S 20y < D len(t) = (6 ex) 2oy ]

k=1

where RH S clearly converges to 0 as t — 0, which proves the claim.
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Step 3: By energy estimates applied to u,,, we have

2 2
max / w2, (x, t)dx + / (Vo (6, )t < [ ooy + D2

te[0,T] -

How about 242 ? Recalling for almost every t € (0,7, we have

Lum = fm(xat) - &ngiix,t)’

“m|aQ =

Applying v = 2= € H}(Q), we have

/ ( ) % + % _/f aum_/ aum 2
o | Tae ) T e | T e T o e )

Observing that (ag—;ﬂ)j =i, ¢(ex);, we then have

d 1
LHS = — | =(a;; - - 2
S i /Q 5 (aig) (Um)i(tm); + cup,,

which implies that

1 2 1 2 1 /T 2 1 /T/ aum 2
— .. . . N .. . . < — —— .
2 /S; aZ] (um)’b(um>]+cum 2 A aZJ (¢m)2(¢m)j +C¢m — 2 0 o m 2 0 o at

Rearranging the terms, and using strict ellipticity, we have

T O \° T
[ (%) +%0 [ 190 < el [ txtiax [ [ 72 taxa
0 Q i Q Q 0 Q

+ Clllag | e el o) / (V6 l? + 61 ]?) (x, ).

Combining this with energy estimate, we obtain
2
||“m||‘;;/;v1(QT) S fmllzz g + 10mll g -

Because L is linear, we may replace u,, by u,, — u;, and f,,, ¢ by fin — fi, &m — &

respectively, which shows wu,, is Cauchy in W, (Qr) and C°([0,T]; H}(f2)). Because
these two spaces are Banach, we know u,,, converges to some u in these spaces as m — oc.
Using the estimates, one can show that u is a weak solution to the original PDE and

B.C.. The initial condition is also satisfied:

a2 8) = SOy < 1) = 283y HI9C) = 00 gy H16 = Bl gy -

Using energy estimate, and that ¢,, converges to ¢ in Hj (), we know for any € > 0,

there corresponds an M > 0 such that for any m > M, we have

Ju(-,t) — Um('vt)”Hg(Q) + ¢ - ¢m||Hg(Q) <6

and hence
limsup LHS of & < e.

t—0
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Theorem 5.1.6. Existence Theorem (Full-version) Consider (IBVP). If f € L*(Qr)
and ¢ € HY(QY), then (IBVP) has a weak solution

o 1,1

u e W2 (QT) N CO([OaT}Q Hé(Q))a

and
t—0

u(-,t) == ¢(+), in H(Q).

Moreover, we have the estimate

mas (Ol gy + [lhwzaiar) S 16y + 17 ar)

One should also notice that this theorem requires no smoothness on 0S2.
Wy (Qr)-regularity

Theorem 5.1.7. Suppose a;; € C1(Q), ¢ € L®(Q),0 € HY(Q), 9Q € C? and L strictly
elliptic on Q. Then the weak solution u € W3 (Qr), and

||u||W22‘1(QT) < ||¢||H3(Q) + ||f||L2(QT) :
iR, Recall up,(x,t) = Yo, crp(t)ex(x), and fr,(x,t) = Y-, di(t)er(x). We may write
cr(t) = e_’\kt(¢,ek)L2(Q) + fg e~ M(=9)d, (s)ds. Also recall that for almost every t, u,, is a

weak solution of
Lt (%, 1) = fr(x,t) — 2embst) 0 on Q)

ot
U (x,t) =0, on 01,
in the sense of H~!(Q). By elliptic H?-estimates, we know that u,,(-,t) € H*(Q), and
um(7t)
||um('7t)HH2(Q) S ||fm('7t)||L2(Q) + + ||um('7t)HL2(Q) )
ot 2
which is equivalent to
2
2 2 U (-, 1) 2
||U7H('7t)HH2(Q) S Hfm('vt)HL?(Q) + + ||um('7t)HL2(Q) )
0t M2
and so by energy estimate
T 2
2 U () 2
| st 1l + |25 22 )
0 L2(Qr)

2 2
S Wmllz2ry + 10mllzr -
Therefore, we have the estimate
2 2 2
Humejl(Qt) S ||¢m||H3(Q) + ||fm||L2(QT) :

The above estimate still holds when u,, is replaced by wu,, —u; and f,,, ¢ BY fin — f1s Om — &1
respectively. Thus u,, becomes a Cauchy sequence in VV22 ’I(QT) and converges to some Uy,

in this space. According to Imbedding Theorem, we know that u., = u. O
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Higher Order Regularity and Compatibility Condition: Assume a;; € C*(Q), ¢ €
LOO(Q) o0 e C? and f € W' (Qr) = C°([0,T); H'(Q)). We claim that dj, € H'(0,T), and
=/, 87 (x 91et) x)dx for almost every t. To see this, we recall that C>°(Q7) is dense in
VV2 (QT) (Because the boundary is smooth), there is a sequence of functions f,, in the prior
space that converges to f in W' (Qr). Let
Ak (t) = | fin(x, t)er(x)dx,

Q

we know that d,, , € C*°([0,T]), and thus d,,, ,(t) = [, %(tx’t)ek(x)dx. We now evaluate

/()T(dm,k(t)—dk(t)fdt—k/: (d;n,k( ) — /Qafgz ) k(x)dx>2dt < /T(fm—f)2+/QT (agzn - g{)z,

and because RH S converges to 0 as m — 0o, we have proven the claim.
On the other hand, we recall that

t
Ck-(t) = 6_)\kt(¢’ ek)L2(Q) +/ e_/\k(t_s)dk(s)d87
0

we know that ¢, € C1([0,T]), and ¢}, (t) = di(t) — Mecr(t) € AC[0,T]. Thus ¢} = d}, — \xc), €
L?(0,T), which shows that

o 1,1

Gum (x,1)
ch ex(x) € W (Qr) N W, (Qr).0
The above needs the fact that each e, € H?(Q). Observing also that

Onlc1) =3 dht)entx) € 17(@r),

we may rewrite the PDE a"” + Ly, = f, as

Z e+ Aeck)er + Luy, = fr, = de(t)ek(x)
k=1 —
Differentiating both sides, we obtain a new equation

o (%) + L% = %5 € L*(Qr), a.e.in Qr,

8};—;@ =0, on Sy, because of [3J.

It is more interesting to talk about its initial condition

Oy, -,
| = > c0)e



Led by previous results, we need to add a new condition (Compatibility Condition):

f(t) = Lo € Hy ().
Therefore, we can safely apply VV22 !_regularity theorem, and obtain the estimate

e

F N 0) = L)l ) - @

w3 Q1) L2(Qr)

We claim that 8f . converges to %{ in L?(Q7) as m — oo. First observe that

= e = 3 [ Gl et

Because 2 € L*(Qr), for almost all ¢, %L(-,¢) € L?(Q), we then may write in the sense of
L*(Q)

of _~(0f,
et = (Grene) | e

which clearly shows that for fixed proper ¢, 8f’” (-, t) converges to %(-, t) in L?(Q) as m — oco.

2
dx§4/
Q

and so an application of L.D.C.T. shows the convergence.

But we also have the estimate

6fm

2
of dx € L'(0,7),

O 1)~ He )

By W, we know that 2%z is Cauchy in W5 (Qr) < L*(Qr). It must converge to some

at
function Voo in W3 (Qr), but we already know that wu,, converges to u in W5 (Qr), and so
Voo = 2. Therefore, we have v e W (Qr), and
ou
|5 < H F1FC0) — Lol - @
w3 (@Qr) L2(Qr)

To estimate the remaining terms 0%u, with |a| = 4, we recall for almost all ¢ we have

= fm — %= € H*(Q), a.e. onQ,
Uy, = 0, on Of).

Assuming 9Q € C*, a;; € C3(Q), ¢ € C?(Q), and by higher order elliptic theory, we have

2

Oy, (-, 1)
2 2 m\’s
e iy W O+ | 2228

2
+ um (Ol 720
H2(Q)

Integrating this inequality over (0,7"), we obtain

/Tn 02 dt</ s |2+/ Oum
um Yy 4 ~ m
0 H (Q) Qr Qr 315

and so after taking m — oo, we have

r ou
2 2
eIy M
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Combining this estimate, 8 and VV22 ! _estimate of u, we know that

Fullysom S 11l (om + 1126 = SOl + 19113 e
S ||f||w§~1(QT) + ||¢||H3(Q) )
where ¢ € H3() is an implicit requirement, because Lo € H(Q) and T¢ = 0 imply that
¢ € H3(Q). Higher order regularity is obtained similarly by differentiating the PDE w.r.t. ¢

formally.

Theorem 5.1.8. Higher Order Regularity (Full-version) Let m > 0. Suppose 02 €
C?m 2 g, € C?™HU(Q), ¢ € CP™(Q), f € W5™™(Qr). We further assume compatibility

condition:

f(-,0) — Lo = ¢, € Hy(Q),

0

87{ — Loy = ¢ € H&(QL

amfl

8’”—1{ — L1 =0, € H&(Q)

(= ¢ € H*™TY(Q)). Then, we have

||u||w22’"+2vm+1(QT) < ||f||W22”“m(QT) + ||¢||H2m+1(9) :

Theorem 5.1.9. Imbedding Theorem(Ladynskaya, Uracera & Solonikov)

o« — 2
W2(Qr) = C4(Qr), 0<a<2- "2 1<p<ool>1.
p

Special Case: When 0 < a < 1, then

|U(X7t) - U(y, 8)|
|| o, 2 m— = sup + max |u|.
|| HC 2 (Qr) (x,6)%(y5) |X _ yla + |t _ S|a/2 Qr | |

Corollary 5.1.1. Suppose everything is C*°-smooth and compatibility holds at all orders, we
have the solution u € C*(Qr).

Remark:

1. Suppose 09, L, f satisfies corresponding smoothness conditions, and u is a VVQ1 ’I(QT)
weak solution of %1; + Lu = f in Qr. Then for all Q) CC parabolic interior of Qr, we
have u € W, ™ *1(Q/.) and

||U||W§m+2=’"+1(Q’T) S ||f||W§m>m(QT) + ||u||L2(QT) ;

2. (Smoothing Effect of Parabolic Equations) Suppose 9, L, f satisfies corresponding
1,1

smoothness conditions, and v is a V(I)/Q, (Qr) weak solution of %1; +Lu = fin Qr
and u|ST = 0. Then for any § > 0, u € W, "1 (Q x (8,T)), and

Hu“vvfmﬂvmﬂ(gx(a,q")) < ||f||W§m‘m(QT) + ||U”L2(QT) :
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5.2 Schauder and L? Theory

Schauder Theory
Consider Mu = 2% — a;;(x, t)u;; + bi(x, t)u; + c(x, t)u for x € Q CC R™, t > 0, and

Mu:f(x,t), (X7t) 6QT7
(DIBVP){u =0, on Sy =092 x (0,T),
u(x,0) = ¢(x), x€Q.

For P,Q € Qr, we define parabolic distance
1/2
d(P,Q) = (x—y[*+[t—s) 7", P=(x1), Q= (y.5).

Definefor 0 <l <1

L O o P) —u(@Q)]
Ch3(Qr) = que C@Qr);  sup [uP) — (@) _, [u], 1. 5= < 00 .
P.QCTr. P£Q d(P, Q) l,3:Qr
Then C*2(Q7) is Banach, with norm HUHCL%(E) = lull oo (g + [uly, 1,57~ Furthermore, we

define for k > 0,
CHE (@) = {u € ™ @r); 0207w € CHE(@r), ol + 28 = 2.},
which is Banach with norm

HuHC2k+l,k+%(Q7T) = HuHC%J«(QiT) + Z [agatﬁuL s
|| +28=2k 12T

Theorem 5.2.1. Embedding Theorem Suppose 92 € C!, if 2k — "TTQ > 0, then

2 2
%,k7"+

W2 (Qr) — C*F~ 2 (Qr),
provided 2k — % is not an integer. (If it is, then it may be replaced by any A < 2k — %)

Compatibility Condition: For k > 0, let

OFu(x,t)

otk |,

u™(x) =

then one may write it as the combination of f, ¢ and the PDE:

ul®(x) = ¢(x)

u(x) = 55(x,0) = £(x,0) ~ L(x)
) 0 dai; b, 0
u? (x) = 57(%,0) = fi(x,0) + L (x,0)0y; — S (x,0); — 5 (x, 0)
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Theorem 5.2.2. Let | > 0, [I] = 2k, k > 0 and | nonintegral. Suppose Q) € C?*T!

a;j,bi,c € Ch2(Qr), f € C42(Qr) and ¢ € C**(Q). Then (DIBVP) has a unique solu-

tion u € C**143(Qr), and

HUHCHLH%(@) S HfHCl'%(E) + H¢||cz+l(fz) )

provided the compatibility condition holds up to order 1+ [1/2]: u)(x) = 0 for x € 09, and
j=0,1,---  1+1[/2].

In the case of Robin/Neumann B.C.: 3;(x, t)u;(x,t) + f(x, t)u(x,t) = 0 for (x,t) € Sr,
where (f1,- -+, 8,) is a outward pointing vector field on 9. The corresponding compatibility
condition becomes

k

o (Bi(x, t)ui(x,t) + B(x, t)u(x,t)) = (in terms of ¢) = 0, ¥x € 0N.

t=0

Theorem 5.2.3. Assume all conditions in previous theorem, B;, 5 € C’l“’HTl(@Q x [0,T7).
Then (R/NIBVP) has a unique solution v € C**1%2(Qy), and

ol gosenc s oy 5 1t gy + I8llcmragny
provided the compatibility condition holds up to order [(I 4+ 1)/2].

Theorem 5.2.4. Schauder Interior Estimate Let 0 < [ < 1, g;;,b;, ¢, f € C’l'%(@). If
w e C*1+3(Qr) is a solution of Mu = f(x,t), (x,t) € Qr. Then for Q' C Qr closed in
R™, and Q'N parabolic boundary T' = 0. Then,

HUHCHLH%(Q,) Sl Qr.Q L ”f”cl,%(@) + HUHLOC(QT) :

Theorem 5.2.5. Boundary Estimate Assume all conditions in previous result, and more:
o0 € C*t u e C*h13(Qy) satisfies

PDE in Qr,
u=0 on Sr,

No I.C.

Then, for all € > 0, we have

Hu‘|02+l'1+%(ﬁx[e7T]) §n7l;QTae7L ||f||Cl%(Q7T) + ||UHL°°(QT) ¢
The boundary condition can also be replaced by R/N without harming the result.

LP-theory
Let 1 < p < o0, a;; € C°Qr), bi,c € L=(Qr), 90 € C%. We consider (DIBVP) with
¢ e WhrP(Q).

Definition 5.4. We say u is a strong solution of (DIBVP) if
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o uc W2 (Qr) and satisfies the PDE a.e. in Qr;
o ue W2HQr) C Wy Qr) = W'P(Qr), and u’ST = 0 in the sense of trace;
= 0 in the sense of trace.

® (u B ¢)|Q><{()}

Theorem 5.2.6. Existence & Uniqueness Suppose 1 < p < oo, p # 3/2, then for all
[ € LP(Qr), ¢ € W2P(Q) satisfying for the case of p > 3/2 the compatibility condition
¢|,, =0. Then, (DIBVP) has a unique solution u € W2*(Qr), and

||U||W§’1(QT) S HfHLP(QT) + ||¢)||W2,p(g) :
When p = 3/2, see Ladynzenskaya, P342.

Theorem 5.2.7. Interior Estimate Let 1 < p < oo, suppose u € Wg’l(QT) 18 a strong
solution of PDE. Then for all Q' closed in Qr, Qr NT' = 0. Then

Hu||W3’1(Q') SnpL,QLQr HfHLP(QT) + ”uHLp(QT) .

Theorem 5.2.8. Boundary Estimate Let 9Q € C*, u € W' (Qr), satisfying PDE and
Dirichlet B.C., then

||u||Wp2’1(Q><[e,T]) SnpiLe,Qr HfHLp(QT) + ||u||LP(QT) .
For R/N B.C., see Garoni & Solonikov, Communication in PDE, Vol 9. 1323-1372(1984).

Theorem 5.2.9. R/NIBVP Let a;; € C°(Qr), bi,c € L®(Qr), Bi, 3 € C', 00 € C?,
1<p<oo,p#3. Then for all f € LP(Qr), ¢ € W?P(Q) satisfying compatibility condition
for the case p > 3

Bi(x,0)¢:(x) + B(x,0)p(x) =0, on 0N.

Then (R/NIBVP) has a unique solution u € W2 (Qr), and

||UHW,§=1(QT) SnpLiQr.Bi.B ||f||LP(QT) + ||¢||W2,p(9) :

5.3 Existence and Uniqueness of Nonlinear Heat Equa-
tion
Let ©Q be bounded, 9 € C?***, 0 < a < 1. We consider the following problem

uy — kAu = f(x,t,u), x€Q,t>0,
(DIBVP){ 4 =0, on Sr,
u(x,0) = o(x), x € Q.
Assume f satisfies:

e For each fixed u € R, f*(x,t) is measurable;
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e For any bounded B C  x [0,00) x R, there is a constant M (B) > 0 such that
[f(x,t,u)] < M(B), ¥(x,t,u) € B,

and
|f(x,t,u) — f(x,t,0)] < M(B)u—vl, (x,t,u), (x,t,v) € B.

Theorem 5.3.1. For any ¢ € L>(R), there is Ty, € (0,00] such that (DIBVP) has a unique

solution u, satisfying

e For small e >0, u € W2'(Q x (¢, Ty —€)), for 1 <p < oo, and the PDE holds a.e. on
Q x (0,T¢),‘

The map t € [0,T, — €] — u(-,t) € L>®(Q) is bounded;

If T, < oo, then

lim ”u('vt)”LOO(Q) = 00

t—>T¢

e B.C. holds in the classical sense if t > 0;

1.C. holds in teh sense

tli%i HU(,t) - ¢()||LP(Q) = 07 1< p < 0.
If Lipschitz condition is strengthened as
| tu) = fly,8,0)] < M(B)(|x — y|* + [t — /% + [u — v]),

then

u € C*T1TE(Q x [e, Ty — €)).
Furthermore, if ¢ € C***(Q) and ¢|,, = 0, kA¢(x) + f(x,0,4(x)) = 0 for x € IQ,then
u € C*(Q x [0,T, — €]).

Remark:
L If f € C®(Qx (0,00) x R), 9Q € C*°, then u € C=(Q x (0,T}));

2. If f(x,t,0) =0, then ¢ > 0 implies u > 0. See “Global Solutions of Reaction-Diffusion
Systems” by Rothe;

3. B.C. can be replaced by
ou

k% +B(x)u=0
on 9N for t > 0, and B > 0, B € C1T*(9Q), ~ unit outer normal of 9. Then the
corresponding compatibility condition is
o¢

k()iv +B(x)p=0

on 0f).
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Example:
— Au=ulP'u, x€Qt>0,1<p< oo,
u(x,t) =0, x € 00t >0, (5.3.1)
u(x,0) = ¢(x), $(x) 20,6 #0,x € Q,
where 902 € C** ¢ € L*>(Q2). By previous theorem, there is a T, > 0 such that (5231) has a
unique nonnegative solution u € C***1+%(Q x [¢, Ty — €]). Is T, < 0o? The answer is “Yes”,
when ¢ is very large.

(Kaplan’s Eigenfunction Method) Let e;(x) > 0 be the principal eigenfunction, and apply

this to the equation, we have

7 (X t)e(x dx—/Aux t)er (x )dx-/ﬂup(x t)er (x)dx,

and then by I.B.P.

% Qu(x,t)el(x)dx—l-)\l /Q u(x, t)er (x)dx = Qup(x t)er(x)dx
> (/qutdﬂx)y
_ </Qu Fex (x) dx)p.

Thus, we obtain an ordinary differential inequality

R(t) + A\h(t) > hP(t), >0,
t) = [ o(x)ei(x)dx.
Observe that if ([, ¢(x)er(x)dx)” — Ay ([, #(x)e1(x)dx) > 0, then I'(t) > 0 for t > 0.

(Equivalently it requires that [, de; > A71). But

W(t)
() — \h(D) =

and hence if T;, = 0o, we have

t h/(t)
/o O ESWI

O gn
LHS = — >t
not) WP = Aih

Observe that LHS is bounded, and hence we are done.

and
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Chapter 6

Conservation Law

—

Let u(x,t) be the density of substance at x and ¢, and f(x,¢,u) the flux of substance.
The equation we concern about is

Special Case: z € R, f = f(u) smooth and the equation becomes

wet (fW)e =0, onRxR,,
u(z,0) = g(z), z e R.

(Method of Characteristics) Let

dX
C : E = f'(u(x,t))
be the curve of characteristics, then by chain rule

du(X(@.0) X
a T Tt
which implies that u is a constant on C. Then &% = f/(M), and X = f'(M)t + s. Recall

t pr—
that u(z,t) = g(s) for (z,t) € C, then u is given implicitly by

:0’

u=g(X — f'(u)?).

Example: When f(u) = g, the equation becomes
Uy + uzu = 0,
u(z,0) = g(z).

The curve of characteristics is X = g(s)t + s, and u(x,t) = g(s).
Pathological Phenomenon: If there are s; < s3 such that g(s1) > g(sz), then it is impos-
sible to have classical solutions existing for all ¢ > 0. Something must blow up in finite time.

Suppose u = g(x — ut), we have
uz(z,t) = g'(x — ut)(1 — ug(z, t)t),
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which implies
g'lx—ut) g'(s)
L+tg'(x—ut) 1+tg(s)
Because g(s1) > g(sz2), then there should be some s € (s1, s2) such that ¢’(s) < 0. Then, as

ug(z,t) =

t—t — we have

1
g'(s)’
which is also called Steepening Phenomenon, or Shock Wave.

Consider the following problem

u + (f(u)), =0, zeRt>0,
v [ )

u(z,0) = g(x).
Theorem 6.0.1. Let f”(u) > 0 be continuous, and g is increasing in x, g is bounded and
C'-smooth. Then (IVP) has a C*-smooth solution in R x (0, 00).

1ERf. Consider characteristic curve
L =19(s),
X(0) =s,
we have X = f’(g(s))t + s. The idea is that for any (z,t), t > 0, we find a unique s € R
such that there is a C.C. C; passes through it. Define h(s) = f'(g(s))to + s and because g is
bounded and f’ continuous, f'(g(s)) is bounded on R, which gives that lim, 1., h(s) = £oo.
Obviously h is continuous in s. By I.V.T., there should be some s¢ € R such that h(sg) = x.
Because h(s) is strictly increasing, such sy is unique. Thus u(zo,t0) = g(so) is well-defined
on the upper half plane. Define u(xg,0) = g(xo).
To show u(z,t) € C*, we check
fg(s)t+s—x= F(x,t s)=0,
and observe
o Fc(Cl
L4 F(xo,to,SO) - Oa

o Fi(zo,to, s0) = f"(g(s))tog'(s) + 1 # 0.
By Implicit Function Theorem, there should be some neighborhood N,(xg,%y) and function
s = s(x,t), for (z,t € N,.) such that s € C'(N,), F(z,t,s(z,t)) =0 on N, and hence
se = —f"(9(s(z,1)))sa-
Moreover, if F(x,t,s) = 0 with (z,t) € N, and s = sg, then s = s(z,t), and so u(x,t) =
g(s(z,t)) for all (z,t) with ¢ > 0. The PDE is automatically satisfied by using the above

equalities, and the boundary condition is fulfilled because

lim u(x,t) = lim g(s(z,t)) = g(x).

t—0+ t—0+
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Theorem 6.0.2. If all the other conditions are satisfied, but g is not increasing in x, then
(IVP) has no classical solution for all t > 0.

Moral of Story: Have to give up the hope for classical solution.
Weak Solutions
Discussion: Suppose u € C*(R x R} ) is a solution, then for all ¢ € C°(R x R} ), we have

0= [ [+ () satda

_/_Z /Ooo(u¢)t+(f(u)¢)xdtd:c—/_z /OOO uge + f(u)gs

—/8R2 (f(u)¢,u¢)-ﬁds—/Z/ooou¢t+f(U)¢m

S /Z g(2)¢(x, 0)dx — /_Z /Om ugy + f(u)ds.

loc

Definition 6.1. If u, f(u) € Lj,.(R%) and the above equality holds for any ¢ € Cj(R x RY).
Then we say u is a weak solution of (IVP).

An important necessary condition for weak solution of the PDE: Rankine-Hugoniat con-
dition: Let C' : X(¢) be a C'-smooth curve, and u a classical solution on each side of C.
w (X (t),t) be the limit of u on left hand side of C' on the curve, and w, (X (t),t) the right hand

side. Then, if u is a weak solution of PDE on €2, we must have by Physics

;lt/a w(z, t)dz + f(u(b,t)) — f(u(a,t)) =0,

while

d X(t) b
LHS = — / +/
dt | Ja X(t)

X(b) b
= w(X (1), )X () + / wy(z, t)dz — un (X (£), )X () + / we(z, t)dz + f(u(b, b)) — f(ula,t))

X(t)

+ f(u(b, 1)) = f(ula, 1))

X(t) b

= X'(t)(w — uy) — / (f(u))zdr — /X(t)(f(U))mdx + fu(b, 1)) — f(u(a,t))
= X'(t)(w — ur) = f(w) + f(ur)

= X'(t)[u] — [f(w)]

which gives that X'(t) = {)=u) —«goy1” Proof,

Up—Ur

Rigorous proof: Because u is a weak solution of PDE, then for all ¢ € C}(Q), we have

/Q(uqﬁt + f(u)dy)dzdt = 0,

with 2 a small neighborhood of the curve. Let 2; and €, denote the two subdomains that

are split by the curve C. Then, using Divergence Theorem, we have

[ ()= [ me.me) o

)
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and similarly, we have

e o o) . L =X)
[ 6= [ SRmtias

and therefore

0= / T O(X (1), D[ (w)] — X () [u]dt.

Remark: If u is C! solution of PDE on each side of C' and R-H condition is satisfied, then
u is a weak solution of the PDE.

Example:

1. Consider the Burger’s Equation

e () 0
1, =<0,

u(z,0) = .
0, =«0.

iy fw] 50
SO="Lr 10

Then R-H demands that

=1/2,

and s(0). Thus s(t) = t/2, and 1/2 is called the shock wave speed;

2. Consider the above PDE with

0, =<0,
g(z) =
1, z>0
Then we define
0, z<0,
u(z,t) =492, 0<2<1,
1 £ >1

Then w is a weak solution. There is another weak solution defined using R-H condition

at the curve §'(t) = 1/2, but it is not Physical. We will talk about that later;

3. Consider the equation with f(u) = u?, and zero initial condition. Set a < 0 < b arbitrary
constants. Then we may split the upper half plane into 4 components by three rays:
X =% X = 24 and X = 2. Assigning the values 0,b,a,0 to each component
counterclockwise, we obtain infinitely many weak solutions.

Big Question: Criterion for “Correct Solutions”? The answer is viscosity/entropy

solution. We consider
Uy + (f(u))m = €Ugy,
u(z,0) = g(x),
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where € > 0 is called the viscosity coefficient. If lim._,ou. exists, then it will be called the
viscosity solution of (IVP).

There is an equivalent way of defining entropy solution, which is through entropy condi-
tion:

u(z + z,t) —u(x,t) <

)

Cx
t

_ Cz

for all 2,z > 0 € R, ¢t > 0 and C > 0 some constant. This equivalent to that u(z,t) — =

decreasing in x for any fixed ¢ > 0. Therefore, for each fixed ¢ > 0, u has at most countably
many discontinuities, and at each of which, u jumps down, that is, Example 3. is not an

entropy solution for all a < 0 < b.

Theorem 6.0.3. Suppose [ is uniformly convex f"" > 60 > 0. If g € L°(R), then

ur+ (f(u), =0, zeRt>0,
u(z,0) = g(x),

(IVP)

has one and only one bounded weak solution satisfying entropy solution, and

||UHL°°(]R><(O,00)) < HgHLOO(]R)'

Existence: Oleinik: AMS translate series 2, 26. 95-173,33; 285-290. If f is not uniformly
convex, or if (IVP) is a system, see “Vanishing Viscosity Systems” by Bianchini & Bressan,
Annals of Math, 2005.

Riemann Problem: Always assume f” > 6 > 0. We consider

uy + (f(u)e =0,

u, x <0,
u(x,0) = g(x) =
Uq, x>0,

where u,.,u; are constants. In the case u, = wu;, the entropy solution is exactly u = u; = u,.
When w; > u,, we then have f'(u;) > f'(u,). We consider the curve §(t) = {e=Su) —.

U —Up

because f is concave up, then we have

f'ur) < 8'(t) < f'(w),

and

U, if £ < o,
u(x,t) =

Because for each fixed t > 0, u jumps down, then it’s an entropy solution. Here we would like
to call s(t) shock wave, and s'(¢) the shock speed. In the case u; < u,, we have f'(u;) < f'(u,),

and so
O = PO) = f0).c € (uuy).



But we also have « =t f'(c), which gives ¢ = (f/)~' (%). Thus, we obtain a formula
T

u(z,t) = g(0) =c=(f)* (;) , (z,t) in the conic region.

We claim that u is a classical solution to the PDE in the conic region: Let G = (f")~', then

in the region, we have

et =0 (3) (F) b (e(B)e (3) -0

We also claim that u is an entropy solution: Notice that

ug, < f(w),
u@, ) =G (3), f(w)<$<f(u),
Upy fur) < 2.
Define
uy, v < f'(u),
G(U) =5 G (f) s fw) <o < f(uy),
Uy, I (uy) <w.
Then G(f'(u)) = w implies that G'(f'(u)) f”(u) = 1, and because f” > 6 > 0, we have
y 1 1
0<G'(v) = ) < rk

which shows that G is globally Lipschistz on R. Observe u(z,t) = G (f), and then for z > 0
andx €R,t>0

=8
SN

watz) —uwt) _G(£)-G() _Li

Vanishing Viscosity Method

Consider

L
.

w+ (%) =0, seRt>0,
u(z,0) = up(z), =€ R,
ug € L>*(R).
The goal is to find a Physically meaningful solution. The strategy is to replace the equation

by u; + (“72) = Uy, for some small . The constant p is called viscosity coefficient, and we
will show that

/£1£>% u,(x,t)

exists and is exactly an entropy solution. (The work is done by Hopf.)

Discussion: We rewrite the equation as
U
= Uy — —U
= (el S (e fi ) )
T/ x
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Integrating both sides w.r.t. z, and we have

% uly, t)dy = pels 5 ( TR ) ),

which further gives

% (67 OE 74(;uf) dy) . (_2/1/) — ,LL (67 Or 11,2(3) dy) + C(t)e Om 71(2‘1/‘Lf) dy

Letting (this is called “Hopf transform”)

z u(y,t)

O, t) = e do W,

we then have
—2p¢y = —20% Gus + (1),
which means
b1 = ea + c(t) .
Therefore, we have

(6_ fot C(T)d‘l'¢) =u (6_ f(;‘ C(T)de))
t
Letting ¢ = e~ Jo ©(Md7 % e know that 1 satisfies

rT

lbt - erz)
(@, 0) = i ~ 5 = Ola),
Thus, we have
1 © e-n?
P(w,t) = \/‘W/ e h(y, 0)dy,
and
o
u(x,t) = —2u—
(2,1) 5
Ve
= —2 _—
"y
fi)ooo % exp |: 4ut fO ’LLO :|

S e by, 0)dy
S ep (4,” [0 = 9)? + 2t [} uo(€)de] ) dy
o 0 (@—y)2
ffoo e At w(y7 )
We define F(z,y,t) = (z — y)? + 2t [, uo(£)d€. Fix (z,t) € R x Ry, we know that
F(z,y,t)
Y2
as |y| — oo, then there is a global minimum point g(x,t) of F. Therefore, we may write
J7 = e (54 [F(ey,t) = Fa,5.0)] ) dy

F(I 9,t)

[ e ¥(y, 0)dy
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If y(z,t) is unique, denote

exp (575 [F(w,9,0) = Fw,5.1)])

_(z— y>2 F(wyt) ’
[oe ¥(y,0)dy

Guly) =

and we claim that G, (y) converges to 6(y—y(x,t)). To see why, we first check that its integral
is 1 (this is easy to see), and for every § > 0, fl

- G,.(y)dy converges to 0 as p — 0. To see
the latter one, we first claim F'(z,y,t)

- F(xvy(xvt)v ) > C(;(m,t)(y - g)2 for all |y - g‘ > o
(Exercise). Then we have
f\y—17|>5 exp <4u1t [F(z,y,t) — F(z,gj,t)])dy

s o018 = [ exp (2 [F(@.0.6) — Fa5,0)) dy

— St -0 gy

f\y—ﬂ|>5
a ffo €xp <4Ht [F(.Q?,y,t) - F(l‘,g,t)])dy

22
le|>5 %%e dz 1ty

- [ exp<4ut [F(m,y,t)—F(x,g,t)])dy' C(a,t)’

In the meantime, the bottom is greater than

/Iyy|<eeXp (4 115 [F(z,y,t) — F(x,y‘,t)]>dy’

and when € > 0 is small, we have F(z,y,t) — F(z,y,t) < 62C(
quantity greater than

x,t), which makes the above

52
exp [(546[;(;’75)] - 2€.

Now, the original term is less than

4t 0 —22 4put o —22
2\/ Clz,0) f(; /D e dz _ 2\/ Clz,0) f5 /D ze”* dz

exp [77524%“”} - 2¢ - exp [77524%“”} - 2¢
<9 4ut ' 1
C(x,t) 4e
— 0,

as ¢ — 0. Thus, we have

o0

lim w(z,t) = lim 7 Yq (y)dy = w

dy =
1n—0 p=0 J_ o t w\y)ay t

Question: What if (x,t) not unique? Let y*(x,t) be the largest, and y, (z, t) the smallest.
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We then have

) = [ TG )y

e

e T — Y« *
[ (5 e

e [ et

t —00

— Yx —
<t [Py,

e

but G#}(ioo ) )(y) converges to d(y — yx), and thus, we have

limsup u(zx,t) < T o
pn—0
Similarly, we have .
liminfu(z,t) > Y Lo

n—0

Now, we are going to show several facts about the limit.

Proposition 6.0.1. Fact 1. For x < x’, we have

Y, t) <y (x,t) < yulal,t) <y (2 0).

1E8. Observe that

F(a! ) — F(a g (. 0),8) = (' — y) +2t / " wo(€)de — (@' — y (e 1)) — 2 /

vy (z,t)

uo(€)d§

y Y™ (x,t)
P () -2y — ) + 2 ( /0 u(€)dé /0 uO(f)d§>

= F(z,y,t) — F(z,y"(z,t),t) = 2(2" — 2)(y — y"(=,1))

> 0.

O

Fact 1. shows that both y* and y, are increasing in x and hence have at most countably

jump discontinuities for each ¢t > 0. Moreover if y* (y.) is continuous at z, then so is y. (y*),

and y.(zo,t) = y*(xo,t). Thus for at most countably many points, y* = y,. for each fixed

t>0.
Thus, we may define vanishing viscosity solution as

LY«

U(:L‘, t) = ’
M, otherwise.

Then, we see that v satisfies entropy condition:

vz +z,t) —v(x,t)  z—y(r+2—0,t) +y.(z—0,t)

, if y, is continuous at x,

z tz
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Proposition 6.0.2. Fact 2. We have the bound

|z —y.l| |z -9y
t 0t

< luoll poo gy -
In particular, both y. and y* converges to x uniformly ast — 0.

1ERf]. Let y(x,t) = y. or y*. Then we have

y(z,t) y
(z — g(z,1))? + Zt/ uo(€)dé < (v —y)* + 2t/ uo(&)dg, Vy € R.
0 0
For a € (0,1), we take y such that z — y = a(x — ), then
y
(-9’ <o’(x-y)°+ 2t/ uo(€)de,
Y
and so
(1—a)(+a)(@ —5)* < 2t uoll oo z) Iy — 71,

where by definition, we have y — g = (1 — a)(x — ), and hence

|z — 9 2
= Tra [[uoll oo (x) -

Sending « to 1, we are done. O
Now, we turn to the boundary condition.

Proposition 6.0.3. Fact 3. For a < b real numbers, we have

b b
/v(w,t)dxﬂ;/ uo(&)dE.

This implies that for all ¢ € CQ(R)

| wnowis = [ w@sde

— 00 — 00

1ER]. The latter statement is obtain by taking a sequence of step functions that approaches

the chosen continuous function. To prove the prior one, we first study the case that uy €
C°(R) N L*>=(R). We then see

y
Flayt) = (o =9 +2t [ ua(€)de
0
has critical point y.(x,t), which implies that
2(y. — ) + 2tug(ys) =0,

=Y = y(z,t), v — a.e. on R. Now, we have

and so ug(y«(z,t)) = =

/ab”(%t)dﬂU = /ab uo(y« (x,t))dx — /: uo(z)dz,
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ast — 0.

For general ug € L>(R), because y, is monotone in x, we have

b n—1
+ Az — y.(x; + Az, t
/v(x,t)dx: lim le—i_ = ys(zit Az )Ax.
a =0

Observe

2(x — yu(z,t) Az = (2 + Az — yu(2,1))? — (z — yu(2, 1)) — (Az)?

Y (@,t)
= F(x + Az, y.(x,t),t) —Qt/o uo(&)dg

Y ()
- (F(x,y*(x,t),t) - 2t/0 uo(g)dg) — (Ax)?
> F(x + A, y.(zv + Az, t),t) — F(z,y.(z,1),t) — (Ax)?,

and then replace z by z;, we have

n—1

2 Z(ml —yu(zi,0) Az > —Ax(b— a) + F(zn, y« (0, t),t) — F(x0, y« (o, t),1).

But LH S converges to 2t fab v(x,t)dx, while LHS converges to F(b, y.(b,t),t)—F(a,y.(a,t),t).
On the other hand, we have

b
2t [ un(€)d€ = F(bb.0) > F(by.0.0).)
0
Y (b,t)
— -z [ (e
0
Y (b,2)
2%/‘ o (€)de.
0
Similarly, we have
a y«(a,t)
—275/ uo(§)dé < —F(a,y«(a,t),t) < —2t/ uo(&)de.
0 0
Now, we obtain

e (bt) b b
d¢ < ,tdr < d€.
A w@)f_sz:>x A wo(€)dé

x(a,t)

By Fact 2., we are done. O
Proposition 6.0.4. Fact 4. For allt > 0, we have

et (Dl ey < ltol] e
1ER]. Mollify ug by u? = j. * ug, then u? € C*>°(R), and

HUZ”Loo(]R) < ||u0||L°°(R)7
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and u? converges to u pointwise a.e. on R. Consider Cauchy problem
u2
Uy + (7) = MUy,
u(z,0) = ul(z).

We know that this problem admits a unique solution u., € C*(R x [0,00)). By Maximum

Principle we know that

Hue,uHLoc(Rx[o,oo)) < HUSHLoo(R) = ||u0||Loo(R)-
Because ., converges to u, pointwise, as € — 0, we know the bound also hold for u,,. O

Finally we have the tools to show that v is a weak solution. Recall that u, € C>(R x

(0,00)) is a solution to the equation with viscosity pu. Fix § > 0, and w € C}(R x [0, 00)), we
0o 0o u2 0o 0o
/ / (ut + () ) wdxdt :/ / PUgwdxdt.
1 —o0 2 x 1 —o0

[e e} 0 2 oo
LHS = —/ / uwy + %wwdl’dt - / u(z, d)w(x,d)dx.
o —o0 —o0

Observe that

Using the facts: u(x,t) converges to v(x,t) x — a.e. for all ¢ > 0 and Fact 4., and applying
L.D.C.T., we know LHS converges to

0o oo 2 0o
—/ / vw + %wmdajdt — / v(x,d)w(z,d)dr.
6 —o0 — 0

Also observe [v(z,d)w(x,0)dz converges to [ ug(z)w(z,0)dz by Fact 3., and [ v(z,d)(w(x,d)—

w(x,0))dr converges to 0 as § — 0 because w has compact support, and so we obtain

oo 0o 2 o)
/ / vwy + %wzda)dt —l—/ v(z, 0)w(z,0)dz = 0.
0 —00 — 00

The Function F(z,y,t): We the solution to the PDE with f(u) = u?/2 is of the form

x — yu(z,t)

U(l’,t) = P )

with y, the smallest minimum point of
) y
Flayt) = (o= 9+ 2 | un(€)de,
0
In the Riemann Problem that uo(z) = X(0,00), We see the corresponding function
F(.T), Y, t) = (I - y)2 + 2tyX(O,oo)
For fixed (z,t), the critical points in y are
o £ <0, yuz,t) =x;
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o >t y.(z,t) =2 —1
e 0 <<t yz,t)=0.

Large-time Behaviour of Entropy Solution: Suppose ug € L>(R) N L'(R). Because y.

is the smallest minimum point of F', we know that

- *2 " d s Ly = ’ d)
( y>+2t/0 o (€)dE < Flw,,t) 2t/0 up(€)de

which gives

@-v* <2 [ wl)de

*

Y
and thus 0
) < 7 [ ()l

Uniqueness of Entropy Solution:

Theorem 6.0.4. Suppose f € C?*(R), f” > 0. Let u,v be L>(R x (0,00)) two entropy

solutions of
wy + (f(w))e =0,
w(z,0) = ug(x).
Then v = v, a.e. on R x (0,00).

i£8f. Idea: By definition of weak solution, for any ¢ € C§(R x [0,0)), we have

(oo}

{[ wov + r@w)o,) dadt + / uo(x)(, 0)dz = 0,

t>0 -

and a similar one for v. Let z = u — v, we then have

{[ o+ (£() = F(0))p0) dadt =0,

t>0

but we also have
flw) = fv) = /01 %f(ru + (1 —7r)v)dr = /01 firu+ (1 —r)v)drz = b(z,t)z,

and hence

ﬂ (2 (¢¢ + bz, t)¢,)) ddt = 0.

>0
If one can show for all ¢ € C§°(R x (0,00)), there is a ¢ € C§°(R x [0,00)) such that
¢+ b(x,t)p, =1, on R x [0, 00),

then we have z = 0 a.e.. However, the agony is that b(z,t) is bad. To resolve this, we will

mollify u,v. Let w,v vanish on the lower half plane, and

U, 1) = Je xppu(x,t),ve(z, 1) = Je %4 v(2,1).
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Because |ul, |v| are bounded by M, so are u,, v, and
Ue —> u; VE —> v,

pointwise as € — 0. Thus, we have

be(2,1) = /0 Flrue + (1= r)o)dr € CH(R?),

We now have to solve ¢; + b.(x,t)¢, = 1. For x € R, t > 0, the C.C. passing through (z,t)
is given by

XD = b(X(5), 5),

X(s)]

s—t =T.

Observe that there is no finite time blow up because b, is bounded for € > 0, and the solution
X (s;z,t) exists and is unique. By ODE, we know that X € C*(R?). Take large T such that
Y =0if £t > T. Solve

¢t+b6(x)t>¢x :’(/)7 (xat) €R27
¢("E7 T) - 07 x G R.
Integrating the PDE along the path X (s) = X (s;x,t), we know

T
OX (T, 1), 7) = 6(X (ti,0),0) = [ (X (s32.0),5)ds,
t
and so
T
oat) =~ [ w(X(si,0), s
t
Let A be a large number such that Supp{y} CC (—A4, A) x (0,T) and K + €, (x,t) an upper
bound for b., we then observe
X(s;A+KT,0)> A+ KT —sK>A,0<s<T,
and
X(s;—A—KT,0) < —A—-—KT+sK<—-A,0<s<T.
Thus ¢ € C3(R x [0,00). We discuss the properties of ¢ in two steps.

Step 1. For any small § > 0 such that ¢ =0, 0 < ¢t < ¢, we have |¢,| is bounded by a number
independent of € on R x [4, T]: Recall that

bul ) = - / ($(X (s:2.1), ), ds

t
K 0X
=— . T/JI(X(S,x,t),S)%dS.

Observing that

d 9X (. — 9be 90X
isor (swt) = GEa,

X (ty2,t) = 1,
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we know

0X _efs ab € (X ( Ta:t)T)dT
ox

But

1
?91;6 (X (7;2,t),7) = % </ filruct (1= r>v€)dr> e=X t=r

/f” y <8“6 (1_r)g’:>dr

By entropy condition, we have for all z >0, 7 >t > ¢,

x=Xt=1

u(z + z,7) —u(z,7) <g C
z I
which implies that
ou, (2,7) < C
< 2
oz 7T T 48
and
v, C
PG
Ox 5
Thus b. is bounded above for z € R, and so are 2X and |¢,| in R x [4,T];

Step 2. For all small 6 > 0 such that ¢(-,t) =0 for t < §, we have

/MMwWJMxSC¢@

forall 0 <t <. Let a = A+ KT, we have

/mxtm—[wm@mw

= Ve6(.)
= sup {Z |p(xip1,t) — @z, t)|; {x;} is a partition of [— a,a]} , &5

- /tT V(X (s;x,t),s)ds

we know when ¢t < §, it is a constant along each C.C. (may depend on €). Therefore 4¢

Notice that

equals to

sup {Z |p(xiv1,0) — P(xy,0)]; {x;} is a partition of [—a, a]} = / || (2, 0)dx
< 2a ||¢r('75)||Loo(R) .
Coming back to

H 2 (¢r + bethy) dadt = ﬂ(bé — b) ¢, zdxdt.

t>0 t>0

105



We already know
LHS = ﬂ wpdzdt,

0
and hence it suffices to show RH.S converges to 0 as € — 0, which is easy to obtain using Step
1. and 2.. O
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Fifac A
Some Regularity Theories

A.1 Interior Regularity of Distributional Solutions

The problem comes from geometric analysis, and if you are not interested in the geometry,
you may start with Equation (B—T): Let (M, g) be a real oriented compact Riemannian
manifold of dimension n > 1. On a chart x : U' C M — U C R", we know that g = (g;) :
U — R™ ™. Given any point p € U’, the tangent space T}, M is defined to be the set {(x,v);v €
Tx(»)U} modulo the equivalence relation: (x,v) ~ (y,w) if and only if w = d(yox~")v. Now g
naturally induces an inner product on 7, M by ([(y,v)], [(x,u)]) = (d(yox~1)v)T - gu, which is
well-defined because g is assumed compatible with transition map. On the dual space T, M*
of T, M, there is also an inner product induced by g~* = (¢*), which is also compatible with
transition maps (it is also natural in the viewpoint of linear algebra). The dual basis with

respect to {32 }7_, will be denoted by {dx;}_;.

A k-form is a smooth global section to the bundle /\k TM*, and we denote the collection
of it by A*(M). We are now able to define inner product on A*(M):

(o, B) ::/MaA*/ﬁ,

where x is the Hodge star operator. With the differential d : A* — A**! we define d* =
(=1)nH+D+ g : AF — AR~ The form Laplacian is then

A form = dd* + d*d.

When restricted to A°, the form Laplacian is exactly negative sign Laplace-Beltrami operator
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Ar_p: for u,v € A% and supp{v} CC U’ for (U’,x) a chart, we have

(Aformu,v) = (d*du,v)
= (du, dv)

_/gij(du)i(dv)j det(g)d;gl...dxn
U
o Ou Ov
= W_— ——/d
/Ug 9u; o, V detlg)das - --dan
__/8 det()ijau vdzy - dz
== o 99" 5 L dag

= _(AL—BuaU)a

where we have used Einstein’s notations. From now on, we simply consider A = Ap_p.

Definition A.1. A k-form « is called harmonic if Aa = 0, and we denote by H* the

collection of harmonic k-form.

Theorem A.1.1. (Hodge Decomposition Theorem) We have the following decomposition
of A*:
AF = A(A") P HF
= dd"(A*) P d*d(A") P H*
=dA)Pd (AP H”
The orthogonality is clear to see and the essential PDE problem is: given a k-form «, is

there another k-form w such that
Aw = a?®

It’s not hard to notice that a k-form is harmonic if and only if all its coefficients are harmonic,
and so to solve the PDE problem, one may simply consider scalar functions. The first problem
we meet is how to define a solution. In a classical manner it is not clear to see the existence
of solution, and so we need the theory of distributions. Notice that a classical solution w to
© satisfies for every v € A,

(a,v) = (Aw,v) = (w, Av).

The right hand side thus defines a bounded linear functional on the subspace A(A*) of A*.

This functional has a natural extension I(-) = (w, ) on the whole A*.

Definition A.2. A distributional solution to © is defined to be a bounded linear functional
l € (A")* such that

[(A¢) = (a,9),
for all ¢ € A*.

Before everything starts, we state two important theorems, details of which will be dis-

cussed later.
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Theorem A.1.2. (A) A distributional solution always have a smooth incarnation. That is
to say, if | is a distributional solution then there is an w € A* such that [(¢) = (w, @) for all

¢ € A*. This also forces w to be a classical solution.

Theorem A.1.3. (B) Any sequence of k-forms oy, such that ||ay,| + |Aay,|| < C for some
C > 0 independent of m has a Cauchy subsequence.

proof of the big guy. It is clear by theorem B, the dimension of H* should be finite, otherwise
there will be an infinite sequence of orthonormal basis, which contains no Cauchy subsequence.

Now, H* naturally becomes a closed subspace of A* and so we may write
A = H*EP(H")* .

Because A is self-adjoint, we find that A(A*) C (H*)*. To show that (H*)* C A(A*), we

need to prove the following inequality
18l < ClABIl, VB € (H*)*.

Suppose the contrary, we obtain a sequence ||3;]| = 1 and ||AB;|| — 0 as j — oo. Define
[(¢) = lim; (B, ®) for each ¢ € A*, we have that [ is bounded and linear on A* and has

norm 1. On the other hand, we have

I(A@) = lim(8;, Ad) = lim(AB;, ¢) = 0.

Now [ is a distributional solution to ® with o = 0. By theorem A, there is a k-form /3 such
that A3 = 0. Each f3; is orthogonal to H*, and so is 3. Therefore 8 = 0, but the convergence
in L?-norm of 3; to 3 forces ||B] = 1.

Let H : A¥ — H* be the natural projection, we have

I(Ag) = (o, ¢ — H(¢))

is well defined, and
1(Ag)] < [lel[|l¢ — H(@)|| < Cllal[ |Ag]|-

By Hahn-Banach Theorem, there should be an extension of [ to the whole space A*. Now, a

simple application of theorem A establishes the solution. O

proof of B. Let U” cC U" C M and (U’,x) be a chart (U := x(U")). Suppose ¢ € C3°(U’)
such that 0 < ¢ < 1 and ¢ = 1 on U”, we then have (by considering the inner product

component-wise)

(A, amd?)] = /U 0 (97 V/det g0 ) amd?day -+ da,
= /U (gij @@a,ﬂ) 0; (amqﬁ2) dry---dx,
/U¢29ij \/@&am@jam‘ -2 '/U¢Oémgij\/m5jam3i¢
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Since (g") is positive definite and 2|ab| < |a|/e + €|b| for all € > 0, we have, by taking e = 1/2
1 - N
RHS > 3 ‘/ ¢? g/ det g@iamajam’ -2 ‘/ ozfng”\/det 90;00;¢
U U

C
> / |Vozm|2—2C’/ a?,\/det g.
2 X(U”) U

On the other hand,
|(Aamvam¢2)| < lamll [[Aamll

and then know that a,, is a bounded sequence in W*?(x(U")). By Relich-Kondrakov compact
embedding, we know that the inclusion Wy (V) < L2(V) = L3(V,/detg) is compact for
every bounded V' CC U, which means that «,, restricted to some U CcC U” should have a
Cauchy subsequence. By compactness of M, we know that there must be a Cauchy sequence

in the original sequence «,.

O

proof of A. By taking a chart (U’,x) (U := x(U")), we localizes the distributional solution [ so
that now it is a bounded linear functional on L?(U, v/det g). By Riesz representation theorem,
there is an element w in L*(U,\/det g) such that I(¢) = [, we+/det gd for all ¢ € C3°(U)
(clearly ¢ o x € A°). Replacing ¢ by Ag, we obtain

(a,0) = I(Ag) = / wd, (g+/et g0,0) d.

On the other hand,
LHS = / ag/det gdi.
U
Denoting a;; = ¢g“v/detg and ¢ = ay/detg, we know w € L*(U,+/det g) = L?(U) satisfies
integral equation

/ w@i(aijajqzﬁ) = / C¢, ng) € C(C;O(U) (All)
U U

To show the smoothness of w it suffices to show the existence of its L? first order derivatives
(see Chapter 4). Since smoothness is a local property we restrict our attention to one point
¢ € U and some small ball B, .= B(y,r) CC U.

The idea is to solve an auxiliary Dirichlet problem:
9i(ai;0;¢) (L) = (%), T € B,
o(¥) =0, Z € 0B,.

This problem has a unique smooth solution ¢ € C**(B,)NC° (B,) for each ¢ € C§°(B,). We
define for h£ 0 and k=1, --- ,n,

Tk’;lf(:rla S Lgy e ;xn) = f(xl’... ’xk+h’... axn))
and difference quotient

-

ppy ="
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Now, we have for ¢ € C§°(B,/2) and 0 < |h| << 1, the problem ® has a unique solution ¢*"
for each T}'¢p. By linearity of the PDE and if we denote P*" = &ﬂ, we obtain

0:(a;j0;P*")(Z) = Di(%), &€ B,,

(A.1.2)
PRI (Z) =0, Z € 0B,.
Applying P*" to both sides we have
/ a;j0;P*"9;P*" = — [ Dy P*"
B,
— / d)Dlthk,h
B,
<ol |[Dg" P
S ol {[vPER ]
By strict ellipticity of a;; we obtain
[VPRM| < [l
Moreover, by Poincaré inequality,
VP |+ ||1P5]| < el - (A.1.3)

Roughly speaking: equation (BA—Il) can be reformulated as

L) ::/ wDp = cP*".

r B
According to (EI33), the sequence of functionals £ is uniformly bounded in (L*(B,2))*. By
Banach-Alaoglu theorem, there is an £y € (L*(B,/2))* such that £} — L, as h — 0. This Ly,
has an L?(B, /2) incarnation —wy,. In particular, we have

h
/ wDMp 28— [ w.
B, B,

On the other hand, by LDCT,

LHS"™Y [ wop.
B,

One Last Problem: This rough idea seems feasible but there is still one remaining
problem that each ¢*" is not smooth when extended naturally to U. This requires one to
cut off each ¢*". Let n € C§°(Byy/5), 0 <n <1and n=1on Bs,s. Define Q"" = Py e
C§°(B,) and we have

9i(ai;0;Q"") = 9,(ai;0mP™")
= 3i(aij8jpk’h)n + Qaijaij’hﬁm -+ 8¢(aij5‘jn)Pk’h
= DZ?/J?] + 2aij8jpk’h8ﬂ] + 8i(aij0j77)Pk’h
= D"y + trash.
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Again, by equation (BT) we still have a proper estimate

’/ th‘ ’/ Qkh waijaij’h@m — /ka’h@-(aijajn)'
S [1PH + ||VPk’h'}|
S el

A.2 DMarcinkiewicz Interpolation and L” Estimates

The following two sections are copies of the corresponding contents in the book “Ellip-
tic Partial Differential Equations of Second Order”. The differential operator L we mainly

consider in this section is of the form

Lu = a” (x)D;ju + b'(x) D;u + c(x)u.

A.2.1 Cube Decomposition

Let Ky be a cube in R”, f nonnegative integrable function on Ky and ¢ > 0 satisfying

[ <tKol.
Ko

By bisecting edges of Kj, we obtain 2" congruent subcubes with disjoint interiors. For those

cubes K satisfying
/ f <tlK|, (A.2.1)
K

we subdivide them in a similar manner to K,. We then collect other cubes that are not
subdivided and denote the class by Z. For K € Z, we call K the cube whose subdivision gives
K. By definition K ¢ Z, and therefore

t < |K/ £<ont. (A.2.2)

Furthermore, setting F' = Uger K and G = Ko\ F', we have
f<tae. inG, (A.2.3)

which is obtained by Lebesgue’s Differentiation Theorem, because almost every point in G is
contained in a decreasing sequence of parallel cubes with diameters shrinking to 0. Letting
F = Uger K, we have by (BZZT),
/ f<t|F). (A.2.4)
F

In particular, when f = yr for some measurable subset I' C K, we have
IT| = |TNF| <tF) (A.2.5)
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A.2.2 Marcinkiewicz Interpolation

For f a nonnegative measurable function on a domain Q (bounded or unbounded) in R™.

The distribution function p = py is defined by
pt) = {x e Q[ f(x) > t}].
This distribution function measures the relative size of f.

Lemma A.2.1. Forp >0 and f € LP(R2), we have
p(t) <t [ |fI7, (A.2.6)
Q

and

/Qlflp —p/ooo P u(t)dt. (A.2.7)

We now prove the following restricted Marcinkiewicz Interpolation.

Theorem A.2.1. (Marcinkiewicz Interpolation Theorem) Let T be a linear mapping
from Li(Q2) N L"(Q) into itself, 1 < ¢ < r < oo and suppose there are constants Ty and T,

such that .
£l T v
pry < <t q) » prp < (2 Lf|r> (A.2.8)

for all f € L) NL"(Q) andt > 0. Then T extends as a bounded linear mapping from
L?(Q) into itself for any p such that ¢ < p <r, and

ITfll, < CTY T~ |If1l, (A.2.9)

for all f € LY(Q) N L" (), where

1l -«

1 «
p q r
and C depends only on p,q and r.

1E8]. For f € LY(Q)NL"(Q) and s > 0, we write

f=fi+fo,

where
(%) = FX)X f1>s-
Then |T'f| < |T fi1| + |T f2|, and hence

prp(t) < prg, (8/2) + prg, (6/2)

27, \* L (2D ,
< (t) /Q|f1| +<t> /Q|f2’-
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Therefore, by Lemma B2, we have

) (e
<ty [T /. ) a
+p(2Ty)" /Ooo 1= (/WS f|’”> dt.

Now, we choose t = As for A some positive number to be fixed later. Thus, we obtain

/Q TP < p(2T7)? AP /Ow P </|f>s yf|q> ds
+ p(2T,)" AP~" /000 sPr (/fgs |f|’"> ds.

-— [ ur

Jor ()= fae (o)

1
- [
=D Ja
Consequently, we have

p L 9 AP—q L T AP—T p
Lz < |2 ey 2oenya| [

for any positive A. By taking the value of A for which the expression embraces a minimum,

But

and similarly,

namely
A= 2T1q/(7“—q)T27"/(7“—q)7

we thus obtain

1/p
T <2(-L_ 4P ToTi—o
177l <2 (24 L) e,

A.2.3 The Calderon-Zygmund Inequality

Let Q be a bounded domain in R™ and f a function in LP(2) for some p > 1. Recall the

Newtonian potential of f is the function
w(x) = [ Tx=3)s(y)dy.
Q

where I' is the fundamental solution of Laplace’s equation. The following result is a special

case of Calderon-Zygmund inequality.
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Theorem A.2.2. Let f € LP(Q),1 < p < oo, and let w be the Newtonian potential of f.
Then w € W2P(Q), Aw = f a.e. and

[D*wl|, < ClIfll, (A.2.10)

where C' depends only on n and p. Furthermore, when p = 2 we have

TEA.

ii.

/R2 |D2w|2:/ﬂf2. (A.2.11)

i. Let us first deal with the case p = 2. If f € C§°(R"), we have w € C*°(R"™) and
Aw = f. Consequently, for any ball Bg containing the support of f,

/ Bwp= [ £
Br Br

Applying Green’s first identity twice, we have

D2w2:/ w;;)?
/BR| = [ Y
oDw

:/ 7+ Dw - .
Br 8Bgr v

Dw = O(R'"™), D*w = O(R™),

It’s clear to see that

uniformly on 0Br as R — oo, whence the identity follows. Recalling that N : f — w is
a bounded linear mapping from LP(Q2) to itself for 1 < p < oo, the proof is then finished
by applying Interpolation Inequality B2 and a density argument;

For fixed i, j, we now define the linear operator T': L?(Q) — L?*(2) by

By the above equality, we have

2
o= ()’ e
for all t > 0 and f € L?*(2). We now show that, in addition,

u(t) < c@, (A.2.13)

for all t > 0 and f € L?*(Q), thereby making possible the application of Marcinkiewicz
interpolation theorem. To accomplish this we extend f to vanish outside €2 and fix a
cube  C Ky, so that for fixed t > 0 we have

/ 1l < tlEo).
Ko

The cube is now decomposed according to the procedure described in the first Subsection

A.2.1 giving a sequence of parallel subcubes {K;}7°, such that

1
t<— [ |f] <2, (A.2.14)
K| Jx,
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iii.

iv.

and
|f| <tae onG=Ky)\ UK.

The function is now split into a “good part” g defined by

f(x), for x € G,
ﬁle |f], forxe K;,1=1,2,...,

and a “bad part” b = f — g. Clearly,
lg] < 27t, a.e.,

b(x) =0, for x € G,

/ b=0, forl=1,2,....
K

Since T is linear, T'f = T'g + Tb; hence,
prs(t) < prg(t/2) + prs(t/2);
Estimation of T'g: By (A=2T132), we have
4 2
pry(t/2) < 5 [ 0
2n+2
<
<= / 9l
2n+2
< .
<Z= [in

Estimation of Th: Writing

b, on Kj,
by = bxk, =
0, elsewhere,

we have

Th = i Tb;.
=1

Let us now fix some [ and a sequence {b,,,} C C§°(K;) converging to b, in L*(Q2) and

| b= [ n=o
K; K;

Then for x ¢ K;, we have the formula

satisfying

Tblm(x) - DijF(X - y)blm(Y)dy
K,

= /K {D”P(X — Y) - Dijr<x - y)}blm(Y>dya
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where y = y; denotes the center of K;. Letting § = §; denote the diameter of K;, we

then obtain

§
< _ .
|Tbym (x)] < C(n) dist (e, ) /K | |bun () |dy

Letting B; = B;s(y) denote the concentric ball of radius ¢, we obtain by integration

Tb,,| < C(n)d / bim
/I(O\BL| i ) Ix|>5/2 |X|”+1 o]

< C(n) |brrm -

K

Consequently, letting m — oo, writing F* = UB; (F = UK), G* = K\ F* and summing

| mi<cw [pi<cwm [

||f||1

over [, we get

so that
H{x € G| |Tb] > t/2}| < C—=

However, by (BA=2T4),

v. To conclude the proof we apply Marcinkiewicz Interpolation Theorem for ¢ = 1, r = 2.

Consequently,

ITf]l, < Cln,p) 11, (A.2.15)

for all 1 < p <2 and f € L?(Q). This inequality is extended to p > 2 by duality.
O

Remark: The operator T can be defined as a bounded operator on LP(Q2) even when (2 is

unbounded when n > 3.
Corollary A.2.1. Let ) be a bounded domain in R™, u € Woz’p(Q), 1<p<oo. Then
[D?u, < C||Au],, (A.2.16)

where C = C(n,p). If p=2,
|D?ul|, = [[Aull, . (A.2.17)

A.2.4 [P Estimates
This subsection focuses on the derivation of local and global LP estimates.
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Theorem A.2.3. (Local L” Estimates) Let  be an open set in R" and u € W2P(Q) N
LP(Q), 1 < p < o0, a strong solution of the equation Lu = f in Q where the coefficients of L

satisfy, for positive constants X\, A,
a’ e C%Q), b',ce L™(Q), f € LF(Q);
a&i&; > NP VE € R (A.2.18)
@[, 0], |e] < A,

where 1,5 = 1,2,...,n. Then for any domain Q' CC Q,

[ully o < C (IIUIIP,Q + ||f||,,,9) , (A.2.19)

where C depends on n,p, \, A, Q', Q0 and the moduli of continuity of the coefficients a® on V.

iER]. For a fixed point x¢ € ', we let Ly denote the constant coefficient operator given by
L()U = aij (Xo)Dij’lL.
By means of linear transformation, we have by Corollary B—2T]

C
1P|, < S 100l (A.2.20)

for any v € W*(Q), where C = C(n,p). Consequently, if v has support in a ball By =
Br(x) CC Q, we have
L(ﬂ) = (aij (Xo) — aij)Dijv + aijDijv,
and hence o
2 2 (%)
220l < § (supla = atea)l D], + D] ).

where a = (a%). Since a is uniformly continuous on €, there is a positive number § such that
la —a(x0)| < A\/2C

if ‘X — X0| < 5, and hence
||D2'UH < C ||(1ij1)ijUH s
P p

provided R < §, where C' = C(n,p, \).

For o € (0,1), we now introduce a cut-off function n € CZ(Bg) satisfying 0 < n < 1,
n=1in B,g,n=0for |x| >0'R, 0’ = (1+0)/2, |Dn| <4/(1—0)R, |D*n| <16/(1 —0)?R2.
Then, if u € W;2P(Q) satisfies Lu = f in Q and v = nu, we obtain

HD2qu;BaR <C ‘|17aijDiju + QaiijDju + uaijDijan;BR

1 1
< (Il + =77 1000+ 7= sy o )

provided R < § < 1, where C' = C(n,p, A, A). Introducing the weighted seminorms

o, = 1 — o)*R* || D* k=0,1,2
i 1?;81( o) R || UHP?B“R’ 0.1,2,
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we, therefore have

B, < C <R2 [/ @0) . (A.2.21)

p;Br

We claim now that &, satisfy an interpolation inequality
C
®; < edy + — o,
€

for any € > 0, where C' = C(n). By its invariance under coordinate stretching it suffices to
prove for the case R = 1.

For v > 0, we fix 0 = 0 so that

¢1 S (1 - O—'Y) ||Du”p;BU +"Y
. (A.2.22)
< €(1—0)*||D? =
= 6( U) H qu;Bg + € p:By +7

by interpolation inequality. Sending v — 0, we obtain
o, < C (R2 1f 1, + @0) ,
that is
C
2 2
1%l = 7oy (B W i+ Tl ) (A.2:23)

where C = C(n,p,\,A) and 0 < o < 1.
The desired estimate follows by taking ¢ = 1/2 and covering Q' with a finte number of
balls of radius R/2 for R < min{J, dist(€2’,99)}.
O

Theorem A.2.4. (Global L? Estimates) Let Q be a domain in R™ with a C*' boundary
portion T C 9Q. Let u € W?P(Q),1 < p < oo be a strong solution of Lu = f in Q

with w = 0 on T (in the sense of trace), where L satisfies conditions in local estimates with
a’ € C'(QUT). Then, for any domain Q' CC QUT,

lulla s < € (el + 1710 ) (A.224)

where C' depends on n,p, \, A, T, ,Q and the moduli of continuity of the coefficients a* on
Q.

Theorem A.2.5. Let Q be a CY' domain in R™ and suppose the operator L satifies the
conditions in local estimates with a € C°(Q), i,j = 1,2,...,n. Then if u € W2P(Q) N
Wy P(Q), 1 < p < oo, we have

HuH2,p;Q S CHLU*O’UHP;Q, (A225)

for all o > og, where C' and oy are positive constants depending only on n,p, A\, A, and the

moduli of continuity of the coeffients a'.
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£ . We define a domain Qg in R"*!(x,t) by

Qo =Q x (-1,1),
together with the operator Ly, given by

Lov = Lv + Dyv,
for v € W?P(Q). Then, if u € W2P(2) N W, ?(Q), the function v, given by

v(x,t) = u(x)cos o/t
belongs to W2?(Qq) and vanishes on 9Q x (—1,1) in the sense of trace. Furthermore,
Lov = cos o/t (Lu — ou) .

By global estimate, we have for Q' = Q x (—e€,¢), 0 < e < 1/2, we get

|Dustl g < € (12 = 0l + i)

1/2

where C' depends on quantities that are described before. But now, taking ¢ = 7/30'/?, we
have
||‘Dttv||p;Q’ =0 H’U”p;ﬂ’
> g cos(026)(26) 7 ]
1/p
1 /27w 1-1/2

=5 (%) ol

so that if ¢ is sufficiently large
||u||p;ﬂ S CHLU-O’UHP;Q. (A226)

The desired estimate follows from global estimates. O

A.3 Schauder Theory

A.3.1 Symbols

Let x¢ be a point in R™, and f a function defined on a bounded set D containing xq. If

0 < a <1, we say that f is Hélder continuous with exponent a at Xq if the quantity

[f] = sup |f(X)—f(X0)| < 00
a;Xo . |X7— XO|O‘ .

The notion of Holder continuity is immediately extended to the whole of D:

[f(x) = f(¥)l

f is uniformly Holder continuous if [f]o.p = sup ~—————"= < 00
xg;éGD |X - Y|a
X#y
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On the other hand, f is called locally uniformly Hélder continuous if it is uniformly Hoélder
continuous on compact subsets of D. For  C R™ an open set, we define the Holder spaces
Ck(Q) (C**(Q)) as the subspaces of C*(Q) (C*()) consisting of functions whose k-th
derivatives are (locally) uniformly Hoélder continuous with exponent a in Q. For simplicity,

we write
o0 (@) = C(9), €O () = C*(D);
cHo(Q) = Ck(Q), CHO(Q) = C*(Q

~—

Moreover, Ci*®() is defined to be the subspace of C*(2) composed of functions with
compact supports in 2.

Now we set

[U]k.a:0 = [Dku}a;g = ‘51|1p [Dﬁu]a;g, (A.3.1)
Bl=k
and the related norms
||u||Ckﬂ(Q) = |u|k,a;ﬂ - ||U’||C"(Q) + [U]k@[;g- (A32)

The spaces C*(2) equipped with these norms are Banach.

To work with interior estimates we introduce certain interior norms which will be useful
later. For x,y € Q, which is a proper open subset of R™ let us write dy = dist(x, 99Q),
dxy = min(dy, dy). We define for u € C*(Q2), C*(Q) the following quantities

[U}Z,O;Q = [U]Z,Q = sup di|DﬂU<X)‘, k= ]-727 ceey

xeN)
|Bl=Fk
k
uli 00 = ulio = Y _[ul}0;
j=0 (A.3.3)
DB — DB
(U]} a0 = sUp di§a| ulx) U(Y)’7 0<a<l;
e ™ Ix — yl|e
XAy

|u Z,a;ﬂ = |U|Z,Q + [u}z,a;ﬂ‘

In this notation,

[u]b.q = lulg.a = [uloa-
We note that |ul}.q, and |ul}, .o are norms on the subspaces of C*(Q2) and C**(Q) respectively
for which they are finite. If Q' CC Q and o = dist(', 0€2), then

min(1, ") ulk,a0 < [ulf a0- (A.3.4)

To develop a global theory we need to introduce some quantities that involve boundary
values, and here we simply start with (2 some proper open subset of R’} with open boundary

portion T on z,, = 0. For x,y € € let us write

dy = dist(x, 0\T), dx.y = min(dy, dy).
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The quantities are:

[U]Z,O;QUT = [U]k QurT = SUP dy |D6 x)|, k=0,1,2,...;

\/3\ k
k

|U|Z,O;QUT = |U|Z;QUT = Z[u];;QuT;

=0
D? D? 3.
i = sup @il 20 =D oy, (4.3:5)
x,y €N |X Y|a
|B1=Fk
|U|Z,Q;QUT = |U|Z;QUT + [U]Z,Q;QUT;
|u|ék;_QUT = sup d” |u(x)| + sup dk o [u(x) — u(y)] u(y)|
T xeN) x,yEQ |X - y‘a

A.3.2 Holder Estimates—the Preliminaries
Holder Interior Estimates
In this subsection, we consider a special case—Poisson’s equation: Au = f.

Lemma A.3.1. Let f be bounded and integrable in ), and let w be the Newtonian potential
of f. Then w € C*(R™) and for any x € ,

/DF(X V) fly)dy,i=1,...,n. (A.3.6)
1E8f. By the formulation of D,I", the function

_ / DiT(x — y) f(y)dy

is well-defined. To show that v = D;w, we fix a function n € C!'(R) satisfying 0 <n < 1,0 <
n <2, n(t)=0fort<1,n(t)=1for ¢t > 2 and define for € > 0,

we(x) = / Pnf)dy, T =T(x — y),m = n(lx — y1/e).

Clearly, w. € C*(R"™) and

[o(x) — Dywe(x)] = /| D [(1—776)F]f(y')dy’

B 9
<= [ (|Dz-r| T |r|) dy
[x—y|<2e €

2ne for n > 2

< fllex "
4e(1 + |log2e|) for n = 2.

The results then follow from the above estimates. O

Lemma A.3.2. Let f be bounded and locally Hélder continuous (with exponent o < 1) in
Q, and let w be the Newtonian potential of f. Then w € C*(Q), Aw = f in Q, and for any
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x € (),

Dijw(x) = [ DyT(x—y)(f(y) — f(x))dy
o (A.3.7)

_f(X) Dir(x_Y)Vj(y)dSy7 ZaJ: 17"'7”'
Qo

Here Qy is any domain containing €2 for which the divergence theorem holds and f is extended

to vanish outside €.

#E8f. The proof is similar to that of the preceding lemma. O

Corollary A.3.1. Let Q be a bounded domain and suppose that each point of OS2 is reqular
(with respect to the Laplacian). Then if f is bounded and locally Holder continuous on €2,
the classical Dirichlet problem: Au = f in Q, u = ¢ on 0N, is uniquely solvable for any

continuous boundary values ¢.
The following estimates are the starting points of the future theory.

Lemma A.3.3. Let By = Bgr(xo), B2 = Bagr(x0) be concentric balls in R™. Suppose f €
C%(Bsy), 0 < a < 1, and let w be the Newtonian potential of f in Bs. Then w € C*%(By)
and

|D*wlo;s, + R [D*waip, < C(|floss + R*[flaisa), (A.3.8)

where C' = C(n, ).

iE8]. For any x € By, we have by formula (BA=377),

Djjw(x) = ; DyT(x —y)(f(y) — f(x)dy — f(x) - D;I'(x — y)v;(y)dsy,

and so by direct computation

< 2" (O] + 2 BR) [flase (A.3.9)

< Ci([f )+ B[ flax) »
where C; = Ci(n, a).

Next, for any other point X € B; we have again by (A=371),

Dijw(x) = . DyT(x —y)(f(y) — f(X)dy — f(X) - D;I'(x — y)v;(y)dsy.

Writing § = |x — x|, £ = (x + X)/2, we consequently obtain by subtraction
Dijw(x) = Dijw(x) = f(x)i + (f(x) = f(X) 2+ L5 + I
+ (f(x) = f(x)I5 + I,
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where the integrals I, I5, I3, 14, Is and Ig are given by

L= [ (DLGx-y) = DLx - y) vy (3)ds,
0B2

I, = - DiT'(x —y)v;(y)dsy
I; = e DyT(x —y)(f(x) — f(y))dy
I = e DyT(x —y)(f(y) — f(%))dy

Iy = / D;;iT'(x —y)dy
B2\Bs (&)
= [ (DyTlx—y) = DyTlx - ¥) (1) - £(3) dy.
B2\Bs(§)
The estimation of these integrals can be achieved as follows:
[ ]

|| < |x — >_c|/ |DD,T'(x —y)|dsy for some x between x and X,
OB2

n?2"1|x — x|
- R
20on—a 4 ¢ : S
<n°2 = , since 6 = |x — x| < 2R.

, since |x —y| > R, Vy € 0Ba,

|| <

1
Rln/ dsy = on—t
nwny, 9B>

BI< [ DI w160 - F3)ldy
Bs(¢)
< =l /B ey

(3) e
) v

<

30
2
e Integration by parts gives
/ Dil'(x — y)v;(y)dsy
9(B2\B;(¢))
D,I'(x — y)v;(y)dsy| + / D,I'(x — y)v;(y)dsy
OBs 0Bs(§)

1 (5 1—n
<24 () / dsy, = 2".
nwn \ 2 9Bs(§)
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|1,] <

QIS

la:x, as in the estimation of I.

15| =

<




[le| < [x — x| |DD;;T(x = y)[|f(%) — f(y)|dy
B2\Bs ()

< 06/ Mdy, c=n(n+5)/w,
ly—¢[=6

- |)A( _ y|n+1

X —yl*
cotn | B

y—€|>0 |)_< - y‘n+

gc<3) 215 ok / €~y ldy, o
2 ly—£|>6

n*(n+5) 01 (3\" ca
< -~ 7 — =
1 —a 2 5 %[ flaxs

where “o” holds because [x —y| < 2|€ —y| < 3% —y].
Now, collecting terms we have
|Dijw (%) — Dijw(x)| < Co (R™[f(3)] + [flasx + [flax) [x = %[, (A.3.10)

where constant Cy depends only on n and a. O

Now, for bounded domains 2 with d = diam{) we define non-dimensional norms on C*({2)

and C*< ()
k

o = Puljo0;

Jj=0

”UH/ck(Q) = |u

lullera @y = luliso + d* D .

Theorem A.3.1. Let Q be a domain in R™ and let u € C*(QY), f € C*(Q), satisfy Poisson’s
equation Au = f in Q. Then u € C**(Q) and for any two concentric balls By = Bgr(xo),
By = Byr(x9) CC Q2 we have

|u|/2,a;Bl S C(|u|0;32 + R2|f|6,a;B2)7 (A311>
where C' = C(n,a).

iE#]. We can write for x € By, u(x) = v(x) + w(x), where v is harmonic in B, and w is the
Newtonian potential of f in By. By previous estimates and the representation of Dw in terms

of f we have

R|Dwlo,5, + R?|D*wl[ 0,5, < CR?|f1),0:,-
Since v is harmonic, we have
R|Dvlo,p, + R*|D*v[y 0,5, < Clvlo;s, < Clulo;s, + B?[flo,5,)-
The last inequality reuses the formula v = v — w. O
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Theorem A.3.2. (Holder Interior Estimates) Let u € C*(2), f € C*(Q) satisfy Au= f
in an open set ) of R™. Then

[uls s < Cllulose + [FIShq): (A.3.12)

where C = C(n, ).

1ERf . If either of |u|p,q or |f|((fgé;Q is infinite, we are done. Otherwise for x € Q, R = dy/3,
By = Bgr(x), By = Byp(x), we have for any first derivative Du and second derivative D?u
dx| Du(x)| + dg | D*u(x)| < (3R)|Dulo;s, + (3R)*|D*ulo;p,

< C(lulo;s, + B?|f16,0:5,)

< Cllulog + 1f16n0):
Hence we obtain

|U|§;Q < O(Jufon + ‘fl(()21)19>

To estimate [u]5 ., we let x,y € Q with dy < dy. Then

|D*u(x) — D*(y)|
Ix —yl|*

2+
dx»y

< (3R)***[D*ulasp, +3*(3R)*(ID*u(x)| + | D*u(y)|)
S C(|U"0;Bz + R2|f|6,o¢;Bg) + G[U]IQ,Q

2
< C(luloe + |15 00)-

Hoé6lder Boundary Estimates near Hyperplane boundary portion

In what follows, R” will denote the half-space, x,, > 0, and T the hyperplane, z,, = 0;
B2 = BQR(Xo), Bl = BR(X()) with center Xo € m, and we let B;_ = B2 ﬂRi, Br = Bl H]Ri

Lemma A.3.4. Let f € C“(Fg), and let w be the Newtonian potential of f in By . Then
w e C*(Bf) and

D*wly s < CII1G gy (A.3.13)
where C = C(n, ).
1ERf. We assume that B, intersects T' since otherwise the result is already discussed before.

The integral representation (A=37) of D;;w still holds for Q = B3 . If either i or j # n, then
the portion of the boundary integral

DiI'(x — y)v;(y)dsy
aBy

on T vanishes since v; or v; = 0 there. The previous methods in estimating D;;w (i or j # n)
still work. Finally D,,,w can be estimated from the equation Aw = f and the estimates on
Dypw for k=1,...,n—1. O
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Theorem A.3.3. Let u € C%(Bf )N C°(BY), f € C*(B]), satisfy Au= f in Bf, u=0 on
T. Then u € C2*(B;) and we have

|u|/2,a;Bi*' S C(|u|0,a;B; + R2|f‘/0,a;B;) (A314)
where C = C(n, ).
ijF_E’ﬂ, Let x' = (l‘la s al‘nfl)a X" = (X/7 _xn) and define

/7 n .f n Z 0
P = () = f(x' xy) if x

f(le _xn) if Tp S 0.

We assume that B, intersects T or we are done. We set B, = {x € R" ; x* € B} and
D = Bf UB; U(B,NT). Then f* € C*(D) and [f*[y 0.p < 2|fI! .+ Now, defining
Fe) ,a; By

wix) = [ [Ple=y) =T =yl fv)dy

(A.3.15)
= [ M=) - Tee -yl £y,
B2
we have w(x’,0) = 0 and Aw = f in B . Noting that
[ rec-y)r@dy = [ Tec-y)s iy,
By By
we then obtain
w0 =2 [ Tx-y)fe)y - [ Tocy)r ).
B} D
Letting w*(x) = [, T(x —y) f*(y)dy, we have
|D2w*|g7a;3f < C‘f*|6,oz;D < 20|f|i),a,B;
Combining this with previous lemma, we obtain
D%y < LTy s (A.3.16)

Now let v = 4 —w. Then Av =0 in By and v = 0 on T. By reflection v may be extended to
a harmonic function on B, and hence the desired estimate follows from the interior derivative
estimate for harmonic functions.

O
We can now state:

Theorem A.3.4. Let Q) be an open set in RY with a boundary portion T' on x,, = 0, and let
ue C*(Q)NC(QUT), fe C*QUT) satisfy Au= f inQ, u=0 onT. Then

[uls a0ur < Clluloa + | floaaur): (A.3.17)
where C' = C(n, ).
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Theorem A.3.5. Let B be a ball in R" and u € C*(B)NC°(B), f € C*(B), Au= f in B,
u=0 on OB. Then u € C**(B).

1ER]. By a translation we may assume that 0B passes through the origin. The inversion
mapping x — x* = x/|x|? is a homeomorphic, smooth mapping of R™\{0} onto itself which

maps B onto a half-space, B*. Furthermore, the Kelvin transform of u defined by

v(x) = |X|2"u( x ) (A.3.18)

[x[2

belongs to C?(B*) N CY(B*) and satisfies

A-v(x*) = x| 7" ?Au(x), x* € B*, x € B

x| < x* ) . (A.3.19)

2

Hence we may now apply the preceding estimates. Since by translation any point of B can
be taken for the origin we obtain u € C%%(B).
O

A.3.3 Schauder Interior Estimates

We denote by Lu = f the equation
Lu = aijDiju +bV'Diu+cu=f, a¥ = a,

where the coefficients and f are defined in an open set 2 C R™ and the operator L is strictly

elliptic if otherwise stated:
a(x)&€ > NP, vx € Q, € e R™,

for some positive constant A.

To obtain estimates of the interior norm |ul3 . of solutions of Lu = f in Q, it suffices to
bound only |ulo,q and the seminorm [u]; .. That this is so is a consequence of the following
interpolation inequalities: Let u € C**(Q), where € is an open subset of R". Then for any

€ > 0 there is a constant C' = C(€) such that
[u]} g0 < Cluloe + €lul; o0, (A.3.20)

|ulj.pi0 < Clulon + €[ulz, a0, (A.3.21)

where j =0,1,2, 0 < o, < 1land j+ 3 < 2+ «a (see Appendix 1 in Chapter 6 of Gilbarg-
Trudinger).

For future convenience we define the following quantities on the spaces C*(Q), C* ().
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For o a real number and k£ a nonnegative integer we define

100 = [l = sup diF7|DP f(x)[;

xEN

1BI=k
DB — DB
[f]()ﬂ_ sup dk+a+a| f(lx> | f(y>|,0<04§1,
, x—yl*
s (A.3.22)
k
£l = D115
7=0
£\ 0 = £S5 + [0
It is easy to verify that
(o+7) o)
1£9lo.ai0 < q» for o +7>0. (A.3.23)

We now establish the basic Schauder interior estimates.

Theorem A.3.6. (Schauder Interior Estimates) Let Q be an open subset of R™, and let
u € CH*(Q) be a bounded solution in S of the equation Lu = f, where f € C*(Q) and there

are positive constants A\, A such that
aij(x)gifj Z )‘|£‘27 Vx € Qv g € Rna

and

0
|a’”|é,()1;97 ‘bl|o EYtoR |C|o w0 S A

Then
uls 00 < Cllulog + 1 £150.0), (A.3.24)

where C' = C(n,a, A\, A).

iE#]. By interpolation inequalities, it suffices to proof the inequality for [u]; ,.q and a further
observation shows that we only have to prove the latter for compact subsets of 2. Namely,
let {Q;} be a sequence of open subsets of Q such that Q; C Q,,; CC Q and UQ; = Q. We
have that [u]} ,.q, is finite for each i. Now, if the desired inequality is true for Q; we have for

x,y € Q and sufficiently large i and any second derivative D?u

(d(z) )2+a|D2u(X) _DQU(y)| [ ]*

[x =yl Hro

Clulos, + 1 f600,)
Clulow + 1 fl6n0);
where d§f)y = min(dist(x, 9€;), dist(y, 92;)). Sending ¢ — oo, we obtain the inequality

d2+a |D2U(X) B Dzu(y)|
i x —yl[*

2
< Clluloe + |f18).0)-
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Now, we may without losing generality assume that [u] . is finite. For notational conve-
nience we use C' to be a universal constant that only depend on n, a, A, A.

Let x0,yo be any two distinct points in 2 and suppose dx, = dx,.y,- Let p < 1/2 be a
positive constant to be fixed later, and set d = pdy,, B = Ba(xo). We rewrite Lu = f in the
form

a"(x0)Diju = (a” (x0) — a” (x))Diju — b'Diu — cu + f = F(x), (A.3.25)

and we consider this as an equation in B with constant coefficients a*/(xg). Applying Holder
estimates with a proper linear transformation to this equation we know that if yq € Bg/2(x0),

then for any second order derivative D?u

d\*** |D? — D2
(5) b= DO < (s + 1718,
%0 — Yol

® ).

2

and thus

d2+a |D2U(|X0> - D|2U(YO)| < 5 (|U|O‘B
X0 — Yo|“ ’
On the other hand, if |x¢ — yo| > d/2,

| D?u(x0) — D*u(yo)|

d2+a
X0 — yol*

2 “ 2 2 2 2
< (M> (2,1 D%u(x0)| + 2, | D?u(yo)]

Therefore, combining these inequalities we have

|D?u(x0) — D*u(yo)]

d2+oz
X0 — ¥yol®

C 9 4
= 2t (|“|0;B + |F‘((),()X;B) + ,17[ ]QQ (A.3.26)
We proceed to estimate |F|(()2,l;3 in terms of |ulo,n and [u]5 .. We have

|F|OaB Z‘(aij(xo) J(x ))Dwu|0a3+ |szD u|OaB
. (A.3.27)

+ |Cu|OaB+ |f|OaB
It will be useful in estimating these terms to have the following inequality. Recalling that for

all x € B, dx > (1 — p)dx, > dx/2, we have for g € C*(Q)

|9\0aB < d*|glo;s + d°**[g)a

I @) 1 )
< oo+ 75 1900.a:
(1= )20 0 (1 = pp)2a 0 (A.3.28)
< 4[]S + U Lol

2
< 812|915, -

a;

24+«

By (B=323) and the above inequality, we obtain

[(a(x0) — a(x)) D*uli?) 5 < la(x0) — a(x)ly a5 D*ulr

< la(x0) — a(x)|§ 0.5 (42 [ul Sl + 81T ]S o),
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where we write a(-)D?*u = a"(-)D;ju. Since
x0) = a9l < 5p lax0) — )|+ el < 40",
xe
we arrive at the following estimate for the principal term in (B=327),

[(a¥ (x0) — a¥ (x)) Dyjul$) 5 < 3202Ap2+ ([ulbg + p°[u)} 00)

o o (A.3.29)
< 3207 Ap*t (C(p)lulose + 207 [ul3 0r0) -
The last inequality is obtained by setting ¢ = p in the interpolation inequality.
Writing bDu = b*D;u for each i, we obtain
|bDU‘o B = 81 |bDU|0 @
< 8121b|S1) | D).
“Hlal il A0)
S 8“ A|u|>{,a;9
< 8 A (C(p)[ulowe + 17 [u]} as0) -
The last inequality is obtained by setting € = 2 in the interpolation inequality.
Similarly, we have
cu < 8u”lc ull”
| |OaB H | |0aQ‘ |Oa,Q i (A.3.31)
S 8A/j’ (C(M)|U|07Q + M a[u];a;ﬂ) .
Finally,
|f|0 ;B < 8:“ |f|0 ;) (A332>

Letting C' denote constant that depends only on n, o, A\, A and C(u) constants depending also

on u, we find

|Fl62hn < CHPPu]s a0 + C)([ulog + 1 flGag):

Inserting this into the right member of (EZ328), and using interpolation with ¢ = u?* to

estimate [u];.,, we obtain

| D?u(x0) — D*u(yo)|

d2+a
X0 — yol®

X0,Y0

< Ol i+ C) (Il + 1£150) -

Taking the supremum over all xq,yo € €2, we obtain

[0l e < CHull e + C1) (Il + 110

Then we arrive at the desired inequality if we set u to be small.

O

It is usually adequate to know equicontinuity of solutions and their derivatives up to

second order on compact subsets.
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Corollary A.3.2. Let u € C?%(Q), f € C%(Q) satisfy Lu = f in a bounded domain Q where
L is strictly elliptic and its coefficients are C*(Q). Then if Q' CC Q with dist(Q)',0Q) > d,

there is a constant C such that
d|Dulo.0 + d2|D2u|0;Q’ + d2+a[D2u]a;Q’ < C(Juloa + | flo.me) (A.3.33)
where C depends only on n,a, \, A, diam €.

Remark: An immediate consequence is that uniformly bounded solutions to the equation
Lu = f are equicontinuous with their first and second derivatives on compact subsets. This

is also true for any family of equations with close constants listed in the above corollary.

A.3.4 Boundary and Global Estimates

Definition A.3. A bounded domain 2 in R™ and its boundary are of class C**, 0 < a <1,
if at each point xq € O there is a ball B = B(xq) and a one-to one mapping b of B onto
D C R" such that

(i) ¥(BNQ) CRY;
(ii) v(BNAQ) C IR";
(iii) ¢ € C*(B), v~! € C**(D).

A domain Q will be said to have a boundary portion T C 0 of class C** if at each point
Xg € T there is a ball centered at it, in which the above conditions are satisfied. We shall say

that the diffeomorphism 1 straightens the boundary near xq.

We note in particular that € is a C* domain if each point of Q has a neighborhood in
which 9 is the graph of a C*® function of n — 1 of the coordinates z1, ..., z,. The converse
is also true for k > 1.

A function ¢ defined on a C*® boundary portion T of a domain € will be said to be in
class C**(T) if g oy} € CF*(D NORY) for each xq € T. It is important to note that if 9Q
is of C* (k > 1), then a function ¢ € C**(9Q) can be extended to a function in C* ()
(see Appendix 2 in Chapter 6 of Gilbarg-Trudinger). Conversely, any function in C**({2) has
boundary values in C**(9).

It is also possible to define a boundary norm on C*%(952), in various ways. For example,
if ¢ € CH*(09), let ® denote an extension of ¢ to Q and define

||¢||ck,u(an) = ingq)Hck,a(Q) :

Equipped with this norm, the space C*%(9Q) becomes Banach.
In obtaining boundary estimates for Lu = f in domains with a C*“ (o > 0) boundary
portion we first establish such an estimate in domains with a hyperplane boundary portion.

Let us first introduce the corresponding interpolation inequality: Let €2 be and open subset
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of R with a boundary portion T" on z,, = 0 and assume u € C**(QUT). Then for any € > 0

and some constant C'(e) we have
[u]} s.0ur < Clulo.a + €[u]5 0.0urs (A.3.34)

|u|;,B;QUT < Clufoa + E[U];,Q;QUT7 (A.3.35)

where 7 =0,1,2,0 < a,8 <1 and j+ 8 <2+ «a. These inequalities are proved in Appendix
1 in Chapter 6 of Gilbarg-Trudinger.

Lemma A.3.5. Let Q be an open subset of R'}, with a boundary portion T' on x, = 0.
Suppose that u € C**(JcoUT) is a bounded solution in Q of Lu = f satisfying the boundary

condition u =0 on T. In addition we assume
i71(0 (1 2 2
|a’”|((),c)x;QUT7 |b* ((),c)x;QUT7 |C|g,g¢;QuT <N |f|£),g¢;QUT < 0. (A.3.36)

Then

|u|;,a;QUT < C (|u|0;Q + |f E)?;;QUT) ) (A337)

where C'= C(n,a, A\, A).

1E8]. The proof is identical with that of the interior estimates if we replace dy and the

interpolation inequalities by dyx and the one exhibited above respectively. O

In order to extend the preceding lemma to domains with a curved boundary, we introduce
the relevant seminorms and norms, in obvious generalizations of (BZ3H). Let © be an open

set in R™ with C*“ boundary portion T. For x,y € Q let us write
dy = dist(x,00\T), dyy = min(dy, dy).
The quantities are:

[U’]Z,O;QUT = [U’]Z;QUT = Sgg Ji|D5u(X)|7 k = 07 17 27 cey
|B1=Fk
k

|U|Z,O;QUT = |u|Z;QUT = Z[u];;QUT;

Ata [ D u(x) — Dou(y)]

" x,yeQ |x — y|*

(A.3.38)

,0<a <

|U|Z,a;QUT = |U|Z;QUT + [U]Z,Q;QUT;
00 = sup du(x)| + sup @i )= UYL
’ x€0 x,y€Q Ix —yl|*

Let € be a bounded domain with C*® boundary portion 7', k > 1, 0 < o < 1. Suppose
that Q@ cC D, where D is a domain that is mapped by a C*© diffeomorphism v onto D’.
Letting ' = ¢(Q2) and ¢¥(T) = T, we can define all the quantities described before with
respect to ' and 7. It is not hard to show that the transformation x = 1 (x) induces a
mapping of functions u(x) — u()~'4(x)) =: @(x’), and the corresponding quantities of u and

@ are equivalent in the sense that K~ '|a|g < |u|g < Kli|g with K depending on 1 and €.
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Lemma A.3.6. Let Q be a C% domain in R, and let u € C**(Q) be a solution of Lu = f
in Q, u=0 on 0, where f € C*(Q). It is assumed that the coefficients of L is strictly
elliptic and

|aij|0,a;97 ‘bi|0,a;ﬂu Iclo,a:0 < A

Then for some § there is a ball B = Bs(Xo) at each point xo € O such that
|u|2,a;BﬂQ <C <|U|O;Q + |f|0,a;Q) s (A339>
where C' = C(n,a, A\, A, Q).

JE8]. By the definition of a C%% domain, at each point x, € 09 there is a neighborhood
N of xo and a C** diffeomorphism that straightens the boundary in N. Let B,(xo) CC N
and set B’ = B,(x9) NQ, D' = ¢(B’), T = B,(x0) N9 C IB" and T" = ¢(T) C oD (T"
is a hyperplane portion of dD’). Under the mapping y = ¢¥(x) = (¢¥1(x),...,1¥,(x)), let
i(y) = u(x) and Li(y) = Lu(x), where

Eﬂ = dijDijfL + BlDza +cu= f(Y)v

and

_ij OY; Y 7i ¢ ;i
1] — J rs 7 — rs r
iY) =5 gp @ X V) =55 "X+ 5 = (x),

iy) =cx), fly)=fx.

We observe that in D’

NE? < aveg;, vE € R,
where A = \/K for a suitable positive constant K depending only on the mapping ¢ on B'.

It is not hard to observe that

|C~Lij lN)l 6|0704;D’ < A= KA’ |f~|07a;D’ < 00.

0,0;D" 0,0;D" 5

Thus the conditions of Lemma K33 are satisfied for the equation L@ = f in D’ with the

hyperplane portion 77. We can therefore assert

- - Z(2
|u|;,a;D’UT’ <C (|U|O;D’ + |f|é,L;D/uT'> )

where the constant C = C(n,a, A\, A). It follows from the (semi)norm equivalence under the

mapping ¢ that

5080 < C <|U|0;B' + |f|é?2¥;B,UT)
< C(lulo;p + | flo.a:7)
< C(Julojo + | flo,as) »

u

where C' now depends on n,«, A\, A and B’. Letting B” = B,/>(x0) N {2 and observing that
min(1, (p/2)2+a)|u|2,a;3” < |u|§,a;B/UT>
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we obtain

’u|2,a;B” < C(|U‘O;Q + |f|0,a;Q) .

The radius p appearing in this estimates depends essentially on x¢ € 0. Consider now the
collection of balls B,/4(x) for all x € 09, we know by compactness of 92 there is a finite
subcollection B, /4(x;), 1 < i < N that covers 0€. Letting min(p;/4) it’s not hard to see that

for this § the conclusion of the lemma is true. O

We remark here that the dependence of the constant C' in the above lemma on the domain
Q is through the constants K, which are essentially related to the C?* bounds on the family
of mappings 1, the local representations of 92 near x € d€). If the bounds on the mappings
1 can be stated uniformly on the boundary, then the uniform bound K can replace €2 in the

statement of the estimate and the domain may also be unbounded.

Theorem A.3.7. (Global Schauder Estimates) Let Q be a C** domain in R™ and let
u € C*%(Q) be a solution of Lu = f in Q, where f € C*(Q) and the coefficients of L satisfy,

for positive constants A, A

a&&; > NEPvx e Q, £ eRY,

and

|aij|0,a;Qa ‘bi|0,a;ﬂa |c|0,a;Q S A

Let ¢ € C*%(Q), and suppose u = ¢ on 0. Then
|u|2,a;Q < C(|U|O,Q + |¢|2,a;ﬂ + |f|0,a;Q) ) (A340>
where C'= C(n,a, A\, A, Q).

iER]. We start with w = 0 on 92 and ¢ = 0, and if this is done we set v = u — ¢ and observe
that Lv = f — L¢, v =0 on 02 and |L¢

0.0:0 < C|Pl2,a:0, then we obtain
|u|2,a;Q S |U|2,OL;Q + |¢|2,o¢;ﬂ S C (|u|U;Q + ‘¢|2,o¢;ﬂ + ‘f|0,o¢;Q) .

Let x € Q. We consider the two possibilities: (i) x € By = Ba, (%) N for some x, € 99,
where § = 20 is the radius in the preceding lemma; (i) x € Q, = {x € Q ; distx,9Q > o}.

Using boundary estimate for (i) and interior estimate for (ii), we have
|Du(x)| + [D*u(x)| < max(CY, C)(fulo + | flo.a),

where C® is the bound coefficients from the boundary estimate and C*) the interior one.
Now, let x,y be distinct points in  and consider the following three possibilities: (i)

X,,y € By for some xq; (ii) x,y € Q,; (ili) x or y is in Q\Q, but not both x and y are in

the same ball By for any xo € 0€2. These exhaust all the possibilities. Case (i) and (ii) are

addressed by the boundary and interior estimates with bound coefficients C'y, C5 respectively.
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In case (iii), dist(x,y) > o, so that

|D*u(x) — D*u(y)|
Ix —yl|*

1
<~ (ID*u(x)] + [DPu(y))
< Cs (Julo + | flo,a) -
Letting C' = max(C1, Cy, C3), and taking the supremum over all x,y € 2, we obtain
[D*u]o < C (Julo +[flo.a) -

Combining this estimate with the bound for |u|s, we are done.

O

Remark: The typical application is that for any bounded set of solutions to a family of

equations is also bounded in the space C*%(£2) and hence precompact in C?().

A.4 de Giorgi-Nash-Moser Estimate

In this section we review the proof of the famous de Giorgi-Nash-Moser estimate. Of

concern is the regularity problem of a weak solution u € H'(£2) to the equation
9; (a” (x)9;u(x)) =0, x € €,
ie.
/Qaijuiqﬁj =0 (A4.1)
for all ¢ € H}(S2). Here for some X > 0
ATHEPR < a¥(x)&6€ < NEP, Vx € Q, € eR™.
Let ' CC Q be a subdomain and ¢ = dist(2,9Q). We have the following result.

Theorem A.4.1. (de Giorgi-Nash-Moser) If [, |Vu|? < 1, then there are two positive

constants a, 8 depending only on n, A and § such that

lu(x) —u(y)| < Blx —y|*, forx,ye. (A.4.2)

Remark: Recall that this result was partially covered by the interior H? estimate in Chapter
4. In that chapter, we assumed that o € C'(Q) N L*>(Q), and obtained the following
estimates

”uHH?(Q’) <c HUHLz(Q) .
By Sobolev Imbedding theorem, we have when n < 3, k—n/p =2—n/2 > 0, and so for some
1>a>0, H3(Q) — C*(). It is evident to notice that de Giorgi-Nash-Moser estimate

extends the result in every sense. The proof is mainly from (J. Moser 1960).
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A.4.1 Subsolutions and Moser Iteration

It is well-known that the weak solution v = w of (A=) satisfy an inequality for o, p > 0,
4\t
/ Vo? < —- v?, (A4.3)
By(x) % JBpia(x)

whenever the ball B,,,(x) is entirely in € (this can be done by using a proper auxiliary
function ¢ = n?u). A crucial observation made by Moser was that this result can be extended
to nonnegative subsolutions. A nonnegative subsolution v to (A1) satisfies (a*v;); > 0 in
the weak sense. That is to say, for any 0 < € HJ(£2), we have

/aijviwj S 0. (A44)
Q

Lemma A.4.1. The estimate ([A-Z-3) also holds for any nonnegative subsolutions of ((AZ-1),

and in particular for
v = f(u),

where u is a solution to ((AZ1) and f is a nonnegative convex function so that integrals in
(AZ3) are both finite. If v is a subsolution so is f(v), provided f is nonnegative, convexr and

monotone increasing.
Remark:

1. A convex function f: R — R is locally Lipschitz by the following estimate

1) 210 ¢ e (|10 =10) |10 =S

)

for —oo < a < x <y < b < +00. Moreover, if f is of sublinear growth (i.e. for some
a,f>0,|f(z)] < alz| + B), then f is globally Lipschitz on R;

2. The square integrability of v = f(u) naturally requires that f to be of sublinear growth
(u € H'(Q) is in general not bounded on ), and hence it is natural to assume that f

is globally Lipschitz;

3. It is important to make precise the pointwise definition of f’(u) because for some F C R
of zero measure, u~!(E) may possess positive measure in 2. To do so we first observe

that f is Lipschitz, and hence it has an almost everywhere defined derivative
g(u), w€ D

where D is dense in R. By convexity, g(u) must be a non-decreasing function, and
hence we may define for every u € D, g*(u) = g~ (u) = g(u), and elsewhere g*(u) =
6l_igl+ g(u+te)and g~ (u) = el_i>r(§l+ g(u—e). Now, we define f'(u) = (97 (u)+g~ (u))/2 for
ute€D u—e€D

u € R. It is worthwhile to mention that g™ and g~ are monotone functions on R, and

hence both of them have at most countably many discontinuities, which means that D
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can be chosen to satisfy that R\ D is a countable subset. Once the pointwise definition of
f'(u) is given, we can define Vv = V (f(u)) = f'(u)Vu, which is therefore well-defined

almost everywhere. The rigorous arguments will be presented in the proof.

1£ 8. Without loss of generality we consider the balls centered at 0 assuming that x| < p+o
is contained in Q. By 7(x) we denote a function of compact support in |x| < p + o with a

piecewise continuous derivative. Then in (BA=24) let

W(x) = v’
which is nonnegative and of compact support. Therefore, we have
/aijnZUiv‘j + 2/aijnvmvj <0. (A.4.5)
Using Schwarz inequality one finds
/772|VU|2 < 4)\4/v2|V77|2. (A.4.6)

Choosing for n(x) a function which is piecewise linear in |x| and is equal to 0 for |x| > p+ o
and equal to 1 for |x| < p, we obtain |[Vn| < o~ ! and
/ |Vo|? < 4—24 v?, (A.4.7)
Ix|<p 9% Jixl<pto
which proves the estimate for subsolutions.
We show now that every nonnegative convex function v = f(u) yields such a subsolution.
We first start with functions having a continuous second derivative f”(u) which vanishes for

|u| > M; the convexity implies that f”(u) > 0. Let ¢(x) > 0 be of compact support and

P(x) = f'(u)p(x).
Then
apuy = a¥ vy + fpaTuug > av;. (A.4.8)
Integrating over x € () gives
0> / aijwiz}j.
This proves (B=4) for any ¢ > 0 of compact support which is indefinitely differentiable. In

fact the assumption f” =0 for |u| > M insures that
bi = [+ fuirh
is square integrable (this is because f’ is bounded on R). If here u is only a subsolution and
/>0, then ¢ = f'(u)(x) > 0, and the above arguments also work in this case, which shows
that v = f(u) is still a subsolution.
To extend the above results to general nonnegative convex function, we first give the

following claim.

Claim 1: Given any nonnegative convex function f on R, there is a sequence of nonnegative
convex functions {f,,} C C%(R) and f” (u) = 0 for |u| > M(™ so that f,, — f in C_(R) and

!
m

(u) = f'(u) for each fix u € R as m — oo, where f’(u) is the one defined in the remark.
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proof of Claim 1. Define the following mollifier

e VA== if |2l < 1

J(I) = )
0 if || > 1

where [ = fil e Y/(=2*) 4z is a normalization constant. We further define J,(z) = J(z/¢)/e.
It is not hard to see that {J.} is a family of nonnegative indefinitely differentiable functions
that have global integration 1 and support within [—e, €] respectively.

Given € > 0, we observe that f’ is a bounded function on [—1/¢,1/¢], and so there
is a positive constant A such that A > f'(x) > —A for x € [-1/e,1/¢]. Now we define
fe(z) = f(x) for x € [~1/e,1/€] satisfying (f¢) (z) = Aif x > 1/e and —A if x < —1/e. This

definition insures that all f¢ are convex functions satisfying (f¢)” (z) = 0 for all |z| > 1/e.

Now we check that
_ / Fe(u = 2)J.(z)da
R

satisfies the requirements in the claim. At first, it is not hard to see that f.’s are all nonnegative
convex and C* smooth all over R.
Let M > 0 and then for u € [-M, M| we have for small € > 0 (say 1/e > max(5M,2)),

[fe(u) = fu)| =

AUWU—@—f@DL@MZ

u—2z)— f(u)|J.(z)dz

</;mﬂkv< )= Fw)] ()

+/ Au— 2 — 1/6) + £(1/6) — f(u)|Ju(2)d=
u—z>1/e

w [ -z =10+ £(-1/0) - fWI.()d:
u—z<—1/e

§/<ﬂu—@—f@%U@M
) 1£(z) — F(v)]

< sup ———¢.
T y€[-M—1,M+1] |$ - yl

This proves that f. converges to f locally uniformly as e — 0.

To see the pointwise convergence of (f.)" to f’, we first observe that for every u € R,

(). (u) = (f)' (w). (A.4.9)
Consider for h # 0,
f(u+h flu+h—2)— f(u—=2)
A Je(2)dz

/ fu+h—z ﬂu*z),](z)dz.

For small |h|, we know that

flu+h—2)— flu—2)
h

ey M@

Je(z
z,y€|[|u|—100,|u|+100] |$ - ?J|

Je(2),
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the left hand side of which is integrable. On the other hand, because f is Lipschitz, the
integrands converges pointwise to f’(u — z)J.(z) for almost every z € R. Therefore, by
LDCT, (B=Z9) holds.

Now, if f’ is continuous at some u € R, we have
[(f)e (W) = f'(w)] < / |f'(u—2) = f'(u)]Je(2)dz

/_|f u=2) - F@IJ.()d:
< swp |f(u—2) = W)

—e<z<e

Taking limsup,_, o+ on both sides, we obtain the fact that (f’)_(u) — f'(u) as e = 0. If for
some u € R, f’ is not continuous, then by monotonicity, it has left and right limits at u. In
fact, by using the notations in Remark 3., we know that f'(x) = g*(z) = ¢~ (z) except for
countably many points in R, and at these exceptional points u, f'(u) = (g7 (u) + g~ (u))/2 =
(f'(u+) + f'(u—))/2. Furthermore, we have

fut) + f’(U)'

()0 = /] = [0, ) - 25
/ =) = PN+ [ 17 )~ )

<5 oswp [f(u—2) — fuo) 4 g swp [F(u )~ f )]
0<z<e —e<z<0

This completes the proof of Claim 1. O
Claim 2: Given any nonnegative convex function f on R, if for general u € H'(Q) (Q

bounded), v = f(u) € H'(Q), then f should be globally Lipschitz with coefficient L > 0 and

Hf(u)||H1(Q) <L ||u||H1(Q). Furthermore, we have
Vu(x) = f'(u(x))Vu(x),
for almost all x € €.

proof of Claim 2. If f is not globally Lipschitz, then it is not of sublinear growth and so by
simply taking u(x) = C' — oo, we have
Jo (f()” _ f(O)?

Jow? e T

which shows that f : H' — H' is not a bounded operator.

Now, we may without losing generality assume that f is Lipschitz. By Claim 1, we have
a sequence of nonnegative convex functions {f,,} € C?(R) and f”(u) = 0 for |u| > M™ so
that f,, = f in C)_(R) and f/ (u) — f'(u) for each fix u € R as m — co. By the proof of the
claim, the Lipschitz coefficients of f,,’s are all bounded by L, and so according to Theorem

222, all f,,(u) € H'(Q) and || fm(u)|| 71 < L ||ull ;1. By local uniform convergence of f,, to f
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and |f,(u)| < L|u| + C, which is square integrable on €2, we have by LDCT, f,,, converges to
f in L?(€Q)). Moreover, by u-pointwise convergence of f! (u) to f'(u), we have x-a.e. pointwise

convergence of f! (u(x)) to f'(u(x)), and hence by Fatou’s lemma

"(w)Vul* < liminf [ |V (fm 2L |Vulr
[ 1r@va <tmint [ 9,0 F < [ 90

Moreover, |V (fm(u(x)))| = |f! (u(x))Vu(x)| < L|Vu(x)| for almost every x € €, and hence
also by LDCT, V (f,.(u)) converges in L?(2) to f’(u)Vu, which shows that

Vo(x) = f'(u(x))Vu(x), x-a.e.
and hence v € H' ().

O
Returning to the proof of the lemma, we have by setting v,,, = f(u)
4\
/ Vol < = v,
Ix|<p 07 Jix|<pto
Using Claim 1 and 2, we may send m — oo and obtain the desired estimate.
O

Now, let us consider a Sobolev type inequality without giving proof.

Lemma A.4.2. Let w € H(Q). Then there is a constant ¢, which depends on n and the

choice of ¢y such that

1/k
(p_"/ u)?”) <ecp <,0_”+2/ |Vw|? +p_"/ de:U) (A.4.10)
[x|<p |x|<p N

for every 1 < k < n/(n—1). Here N is any measurable set in |x| < p of measure m(N) >
cglp". In the following cgl will be chosen to be half the volume of the unit ball and c,, n > 2,

depends on n only.
Remark:
1. The exponent  in (AZTd) does not have to be < n/(n — 1), however the limitation

k < n/(n—2) is essential;

2. The existence of the integral in (A=2T10) follows from the finiteness of the integrals on
the right.

Using Lemmas B2 and B=Z3 it is possible to estimate the square integral of w" in
terms of the square integral of w for any nonnegative subsolution w. For this purpose let IV
be the sphere |x| < p in Lemma B2 and apply (BAZ3) to w:

1/k
<pn/ w2n> Scn <pn+2/ Vw|2+pn/ dea:,)
Ix|<p [x[<p Ix|<p

2

§c<1+2>p”/ w?
o |x|<p+o
p’ a\"

o 2) (o5 oo ol
g p |x|<p+o
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Assuming o < p we have with a new ¢

( ) /|x|<pwzﬁ>1/~ - c(1+fj§) [(p—l—a)" /|x|<p+a wQ} (A.4.11)

which is valid for any nonnegative subsolution w.

Finally, we have the following simple observation called Moser Iteration: If ¢g > 0 and

0< ¢, <cPf_,v=12,...; k>1, (A4.12)
then
limsup ¢® < ¢, (A.4.13)
V—00

where ¢; = ¢*/(rk — 1)?. Defining the sequence 1, by
hy, = C§+1_K71V¢V7

(AZITA) goes over into the inequality

O<wu S 1/1571

which implies
vy S Y5
This makes (A~2T3) evident.

A.4.2 The Core Theorems

Theorem A.4.2. Let v(x) > 0 be a subsolution in the weak sense which is defined in |x| < 2r.
Then
vi(x) < cr‘"/ vidx (A4.14)
|x|<2r

for almost all x in |x| < 7.

Remark: This result will be applied to functions f(u) of a solution u, where f is a nonnegative

convex function of u. For v = |u| one obtains a bound

() < 6~/ ( /Q u2>1/2

for all x € ' CC Q satisfying dist(Q',0Q) > 0.
1E8]. Since v(x) is a subsolution, so is
w = )" = v(x)"

for p > 1 because f(v) = v” is a nonnegative convex function with f’(v) > 0 for v > 0. Let
p= k" and

— k7 —
w,=0", v=0,1,2,...,
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where Kk =n/(n —1).

According to (A=) we can estimate higher and higher norms of v. Let 2r > py >
p1 > -+ be a sequence of positive numbers satisfying p,_1 < 2p,, then (A=) applied to
W=Wy—1, p= Py, 0= pu_1— Py < py, yields

2 K
¢y=p;"/ wizp;”/ wiiléc21+<p” )
[x|<pv |x|<pv Pv—1 — Pv

Choosing, for instance, p, = (1 + 27") which implies p,_1 < 2p, and

Py1-

Pv

— P i<,
pu—l_pu

we find
by < 210",y < Py
By previous arguments, we know that

limsup ¢,/*" < c1.p.

V—00

Since the left hand side converges to the essential maximum of v2, the theorem is established.
O

The following theorem represents a Harnack type inequality which refers to nonnegative
solutions w. The assumption that u is not identically 0 is expressed by the requirement that
the set |x| < r, where u > 1, has at least the measure ¢, lpn with an appropriate constant
co > 0:

mu>1; x| <r)>cylrm. (A.4.15)

This assumption does not reduce generality according to the strong maximum principle for

weak solutions (see Gilbarg-Trudinger section 8.7).

Theorem A.4.3. Let u > 0 be a solution of ([AZ1) in |x| < 2r satisfying (AZ-13). Then

there is a constant ¢ > 0 depending on n and \ only such that

u(x) > ¢t in |x| < r/2.

1E£7. Using a similar approximation procedure by which we derived inequality (A=2=3) for all

v = f(u), when f > 0 is a convex function, we now derive
/ |Vo|? < er™? (A.4.16)
|x|<r

for functions v = f(u) for which also h = —e~/ is a convex function. To prove this result we
consider first functions f which are twice continuously differentiable. Then the convexity of
h implies

"= f =en">0. (A.4.17)
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Let ¢(x) = f'¢(x), where 1) > 0 is of compact support in |x| < 2r. For f’ # 0, one has

"

(f)?

a“puy = a¥ vy + fYaluug = apv; + Yavv;.

This and (A=T1) show that
0> /aijwivj + waijvivj,

or with ¢ = n?, where 7 again is a function of compact support in |x| < 27, we find

1/2 1/2
/ P IVf? < 232 ( / |Vn|2) ( / 772|W|2> ,

and with a new constant ¢
[ e <e [ va.

Choosing for 7 a function which is piecewise linear in |x| and equal to 1 in [x| < r, one obtains
We apply (BAZZT8) to

v = f(u) = max(—log(u +¢€),0), 0 <e< 1.

Then
h = max(—(u +€),—1)

is obviously convex and v is well-defined because u > 0. Since by (AZTH) v = 0 on a set of
measure > ¢, 7", Lemma B2 with x = 1 and (AZ18) yields

7“_"/ v? < C’I“Q_n/ |Vol* < 3.
[x|<r [x|<r

On the other hand f is convex and nonnegative. Therefore Theorem A=43 gives, for |x| < r/2,
v?(x) < c4r"/ v? <
|x|<r

whence, by definition of v, —log(u +€) < ¢, or
u+e>e “in |x| <r/2

for all 0 < € < 1. Sending € — 0 one obtains the theorem. O

A.4.3 Proof of Theorem A~41

By Theorem B2, a solution u satisfying [,u* < 1 is bounded in every compact sub-
domains € by
Ju(x)| < 5"

provided dist(Q',99Q) > 6 > 0.
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It is the aim to estimate the oscillation of u(x) in |x| < p in dependence on p: Let

w(p) = max u(x) — min u(x),
[x[<p [x|<p

assuming that the ball |x| < p lies in €. Obviously

w(p) < 2e67 /2.

Fixing p = 2r < § and adding an appropriate constant to u (which does not alter the

oscillation) we can assume taht

max u(x) = — min u(x) = %w(%‘) =M.

[x|<p Ix|<p
Then
M—|—u_1+u M—u_1 U
M M’ M M

are also solutions of (B=Zl). They are both nonnegative and at least one of them satisfies
condition (BEZTH) (the constant c; ' being half the volume of the ball [x| < 1) depending on
whether u > 0 or u < 0 occurs more frequently. Taking the first case we obtain by Theorem

A3
u+ M

M

. roop
> <-==c
¢ in |x] 5= 1

or

~M(1—c) <u(x) < Min x| < g

In any case we arrive at

o (8) < ME ) =) - (207

for p < 6. Applying this inequality repeatedly we find for r = 4=™p

o) e - e =) (1)

p
where a = —log,(1 — (2¢)71) = ¢; . For every r < § one can find an integer m > 0 such that
p = 4"r lies in

0 <p<é

4 pP>0,

which gives
4 e}
o) <o) (3) 1 e
if |x| < ¢ lies in ©'. Now let Q" CC € such that dist(©2”,9€) > 2§. Then the ball of radius ¢

about x lies in ' and we have for any two points x,y € ",
[u(x) —u(y)| < w(lx —y|) < 672 x —y|°
if |x —y| < d. On the other hand if |x —y| > J, one has trivially
o
lu(x) — u(y)| < 2e6 /% < 206*”/2%.

This proves the theorem with a = c;! and 8 = cg6"/27.

fThis inequality can be used to establish a Liouville type theorem: with w = lim,_, o w(p) < oo, one obtains
0<w< (1-(2¢)"")w, and hence w = 0.
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