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Chapter 1

Maximum Principles

1.1 Second Order Elliptic Differential Equations and Some
Examples

There are already tons of introductions on second order elliptic equations, and here we
simply list the definitions and several examples.

Definition 1.1. Suppose Ω ⊂ Rn is an open and connected domain. x = (x1, · · · , xn) ∈ Ω,
and we define an operator

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u (1.1.1)

with u a proper real-valued function on Ω, and (aij(x))n×n is symmetric.

Definition 1.2. We say the operator L elliptic on Ω if (aij(x))n×n is positive definite for
arbitrary x ∈ Ω. We also say that L is strictly elliptic if there exists a positive lower bound
for the eigenvalues.

Definition 1.3. An elliptic equation is one of the form

Lu(x) = f(x), x ∈ Ω, (1.1.2)

where f is given, and u is unknown. u is called an upper solution to (1.1.2) if Lu ≥ f

almost everywhere, and in the reverse case it is called a lower solution.

EXAMPLES:

1. (Lower Harmonic Function) Let f(z) = u(x, y) + iv(x, y) be an analytic function on
Ω ⊂ R2, then we have by Cauchy-Riemann Equation we see u, v satisfy ∆u = 0, ∆v = 0,
that is, they are harmonic. Now, the absolute value of f becomes a lower harmonic
function, which is obtained by a direct computation.
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2. (Electrostatics) Let f(x) be a function that represents the density of the electric mate-
rials, then the solution to the Cauchy equation

−∆u = f

gives the static electric field the materials produce, where the operator ∆ =
∑

∂2

∂x2
i

will
be called Laplacian throughout the note.

3. (Mean Curvature) By mean curvature we mean half of the trace of the metric tensor of
a surface. We now consider the surface z = u(x, y), (x, y) ∈ Ω. Computations show that

its mean curvature is H(x, y) = 1
2
∇ ·
(

∇u√
1+|∇u|2

)
. In the theory of minimal surfaces, a

surface that minimizes area locally if and only if its mean curvature vanishes, i.e.

∇ ·

(
∇u√

1 + |∇u|2

)
= 0.

This is equation gives

(1 + u2y)uxx + (1 + u2x)uyy − 2uxuyuxy = 0.

And it can be shown that the thermal tensor(
1 + u2y −uxuy
−uxuy 1 + u2x

)
≽ I.

4. (Steady States of Heat Equation) Let u(x, t) be the temperature at point x ∈ Rn, at
time t. Then the heat energy density will be E(x, t) = cρu(x, t), with c the specific heat
and ρ the density of mass. Suppose c, ρ are constants, and Ω a domain the material
possesses. Then the rate of change of total heat energy in Ω will be modelled by

d

dt

∫
Ω

E(x, t)dx = rate in − rate out -
To formulate -, we assume that N is the unit outer normal vector field on the surface
S = ∂Ω, V the heat transfer velocity vector field. Then the net rate at which mass/heat
crosses surface S in the direction N is∫

S

ρV · NdS,

where F = ρV is called the flux, and so

- =

∫
S

F · NdS.

Now, what is F? According to Fourier’s Law, F should have angle less than 90◦ with
−∇u, i.e. the flux should be approximately in the diffusing direction of the temperature.
This observation (although not mathematical) forces F = A(x, t)(−∇u(x, t)), with A

symmetric and positive definite. It is of wide interest to study this thermal tensor
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A, which actually represents various heat-transfer properties of different matters. A
rough classification of such matrices is to call A = kI, k ∈ R, isotropic, and otherwise
anisotropic.

With the integral equation established successfully, we may deduce by divergence theo-
rem

d

dt

∫
Ω

E(x, t)dx = −
∫
∂Ω

A∇u · NdS

=

∫
Ω

∇ · (A∇u) dx,

where Ω can be replaced by any smooth sub-region. Thus the integrands should satisfy
the equation

dE(x, t)
dt

= ∇ · (A∇u)

or
cρut = ∇ · (A∇u) .

The steady state of the above heat equation is a solution u that is independent of time
t, i.e.

−∇ · (A∇u) = 0.

5. (Irrotational and Incompressible fluid) Let V be a velocity vector field in a simply
connected domain Ω. “Irrotational” means that V = ∇ϕ for some function ϕ, and
“Incompressible” means that divV = 0. These two conditions imply that ∆ϕ = 0.

1.2 Weak Maximum Principle for Second Order Elliptic
Differential Equations

Baby Example: Lu = u′′ on the interval (a, b). Suppose u ∈ C2(a, b)∩C0[a, b] satisfying
u′′ ≥ 0 in the interior, then max[a,b] u = max{a,b} u.
Question: Is it still true for the case Lu ≥ 0, in Ω, that

max
Ω

u = max
∂Ω

u ?

Theorem 1.2.1. Weak Maximum Principle (c ≡ 0) Suppose L is strictly elliptic on a
bounded domain Ω and u ∈ C2(Ω) ∩ C0(Ω̄) satisfies Lu ≥ 0 in Ω, then

max
Ω̄

u = max
∂Ω

u,

provided bi’s are bounded on Ω.

证明. Special case: Lu > 0 in Ω

Since u is continuous on Ω̄, then there should be some x0 ∈ Ω such that u(x0) = maxΩ̄ u.
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Case 1. x0 ∈ ∂Ω, then the proof is done;

Case 2. x0 ∈ Ω implies that ∇u(x0) = 0. By considering the Hessian matrix evaluated at x0,
we see

D2
xu(x0) =


u11 u12 · · · u1n

u21 u22 · · · u2n
...

... . . . ...
un1 un2 · · · unn

 ≼ 0,

by maximality. Observing that

0 < Lu(x0) = aijuij(x0) + biui(x0) = aijuij = Tr(AB), with B = D2
xu(x0),

we take orthogonal matrix P such that

P TAP = diag{λi},

where λi’s are eigenvalues of A and λi ≥ λ0 for all 1 ≤ i ≤ n.

Now, we have

Tr(AB) = Tr(P TABP )

= Tr(P TAPP TBP )

= Tr(diag(λi)B̃)

=
∑

λib̃ii

≤ 0,

since B ≼ 0, and so is B̃, which implies b̃ii ≤ 0. Thus the contradiction is established.

General case: For ϵ > 0, we define

v(x) = u(x) + ϵeαx1 .

Then we have

Lv = Lu+ L (ϵeαx1)

≥ ϵ
[
α2a11 + b1α

]
eαx1

≥
[
α2λ0 −Mα

]
eαx1

> 0, if α is taken large,

where M is the upper bound for the bi’s. Applying the special case to v and letting ϵ → 0,
we are done (here we need the boundedness of Ω).

Remark:

1. If “Lu ≥ 0” is replaced by “Lu ≤ 0”, then we obtain weak minimum principle

min
Ω̄
u = min

∂Ω
u.
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2. Physical meaning of Lu ≥ 0 in Ω is that −Lu(x) = f(x) ≤ 0 the creation-degradation
rate is negative, which means the material is reducing heat, like a refrigerator. One
non-example is that the following equation∆u = 1 in Ω

∂u
∂n⃗

∣∣
∂Ω

= 0

has no solution, according to divergence theorem. Physically, an isolated box which is
loosing heat everywhere cannot reach a steady state.

Question: What if c(x) ̸≡ 0?
Bad News: We consider

Lu = u′′ + u, on (0, π)

then L(sinx) = 0, but it does not satisfy the maximum principle.

Theorem 1.2.2. Weak Maximum Principle (c ≤ 0) Suppose L is strictly elliptic on a
bounded domain Ω and u ∈ C2(Ω) ∩ C0(Ω̄) satisfies Lu ≥ 0 in Ω, then

max
Ω̄

u ≤ max
∂Ω

u+,

provided bi’s are bounded on Ω, and c ≤ 0 in Ω.

证明. Let Ω+ = {x ∈ Ω; u(x) > 0} be a sub-domain, then there are two cases.

Case 1. Ω+ = ∅, trivial.

Case 2. Ω+ ̸= ∅,

sub-case 1. Ω+ ⊂ Ω, then on Ω+, we have

0 ≤ aijuij + biui + cu,

which implies
aijuij + biui ≥ −c(x)u ≥ 0, on Ω+.

Applying weak maximum principle for c ≡ 0 to u on Ω+, we obtain

max
Ω+

u = max
∂Ω+

u = 0,

which is a contradiction.

sub-case 2. ∂Ω+ ∩ ∂Ω ̸= ∅, then

max
Ω̄

u = max
Ω+

u

= max
∂Ω+

u

= max
∂Ω+∩∂Ω

≤ max
∂Ω

u+
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Caution: Without “+”, we will have a counter-example

Lu = u′′ − u, Ω = (−1, 1),

and u(x) = −(x2 + 100), then Lu = 100 − 2 + x2 > 0 on Ω, and maxΩ̄ u = −100, while
max∂Ω u = −101.
Remark:

1. If we replace “Lu ≥ 0” by “Lu ≤ 0”, then we have a minimum principle

min
Ω̄

≥ min
∂Ω

u−,

where u− = min{0, u}.

2. If we have “Lu = 0”, then there are two cases

Case 1.

max
Ω̄

|u| = max
Ω̄

u

≤ max
∂Ω

u+

≤ max
∂Ω

|u|

≤ max
Ω̄

|u|,

and so maxΩ̄ u = max∂Ω u
+.

Case 2.

min
Ω̄

|u| = −min
Ω̄
u

≤ −min
∂Ω

u−

≤ max
∂Ω

|u|

≤ max
Ω̄

|u|,

and so minΩ̄ u = min∂Ω u
−.

3. Question: What if Ω is unbounded?

Bad News: u(x, y) = y is harmonic on the upper half plane satisfying zero boundary
condition, then its maximum value is infinity while on the boundary it’s constant 0.

Solution: This can be saved if lim
Ω∋x→(±)∞

u(x) exists.

Theorem 1.2.3. Suppose Ω is unbounded, and for every R > 0, bi’s are bounded in
Ω ∩BR(0). L is strictly elliptic on Ω ∩BR(0), and u ∈ C2(Ω) ∩ C0(Ω̄) satisfiesLu ≥ 0 in Ω;

u(∞) := limΩ∋x→(±)∞ u(x)exists.

Then
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i) supΩ̄ u = max{sup∂Ω u, u(∞)} if c ≡ 0;

ii) supΩ̄ u ≤ max{sup∂Ω u
+, u(∞)} if c ≤ 0 in Ω.

证明. Applying WMP on Ω ∩BR(0), we obtain

(c ≡ 0)

sup
Ω∩BR

u = max
∂(Ω∩BR)

u

= max
(

max
∂ΩR

1

u,max
∂ΩR

2

u

)
.

Sending R→ ∞, we obtain

sup
Ω̄

u = max{sup
∂Ω

u, u(∞)}.

(c ≤ 0) Similar proof.

Theorem 1.2.4. Comparison Principle Assume Ω is bounded, L is strictly elliptic on Ω,
bi’s are bounded and c ≤ 0 on Ω. SupposeLu ≥ Lv, in Ω;

u ≤ v, on ∂Ω.

u, v ∈ C2(Ω) ∩ C0(Ω̄), then u ≤ v in Ω̄.

证明. Simple application of WMP(c ≤ 0).

This immediately gives the following corollary.

Corollary 1.2.1. Assume conditions in CP on Ω and L. Then the Dirichlet Boundary Value
problem has at most one classical solution.

Example for non-solution: u′′ + u = 1, on Ω = (0, π);

u = 0, on ∂Ω.

has no solution. This can be verified by multiplying sinx to the equation and integrate it
over Ω.
Applications of WMP:

1.

(DBVP)

∆u+ f(u) = 0, in bounded Ω;

u
∣∣
∂Ω

= 0,

with f ∈ C1(R) and decreasing, then (DBVP) has at most one solution in C2(Ω)∩C0(Ω̄).
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证明. Suppose u1, u2 are two classical solution, then we have

∆(u1 − u2) + f(u1)− f(u2) = 0

We write f(u1)−f(u2) = C(x)(u1−u2), then C is non-positive. According to WMP(c ≤
0) we see

max
Ω̄

|u1 − u2| = max
∂Ω

|u1 − u2|,

and thus u1 ≡ u2 in Ω̄.

2. Let Ω be bounded in Rn, n ≥ 3. Suppose u ∈ C2(Ωc) ∩ C0(Ωc) satisfying∆u = 0, in Ωc;

u(∞) := limx→∞ u(x) = 0,

then, there exists a constant C > 0 such that

|u(x)| ≤ C

|x|n−2
, ∀x ∈ Ωc.

证明. Take a large M > 0 such that MΓ(x−x0) ≥ |u|(x), for all x ∈ ∂Ωc, where x0 is in
Ω and Γ is the fundamental solution. Letting v(x) =MΓ(x − x0)− u(x), and applying
WMP on unbounded domain, we obtain

inf
Ωc
v ≥ min

(
inf
∂Ωc

v−, v(∞)
)
= 0,

which implies |u(x)| is dominated by 1/|x|n−2 up to a multiplicative constant. Similar
proof show that u(x) decays exactly at this rate.

3. Let Ω be bounded, L be strictly elliptic on Ω, i.e.

aij(x)ξiξj ≥ λ0|ξ|2, ∀ξ ∈ Rn,x ∈ Ω,

where λ0 > 0 is some constant. bi’s are bounded by M > 0 and c ≤ 0. Suppose that
u ∈ C2(Ω) ∩ C0(Ω̄) satisfies Lu(x) = f(x), then

max
Ω̄

|u| ≤ max
∂Ω

|u|+K sup
Ω

|f |,

where K > 0 is some constant depending only on λ0 and M .

Structural Stability: Let fa and ϕa be approximations to f and u
∣∣
∂Ω

, then the above
result gives global stability of the solution, i.e. the corresponding approximate solution
ua satisfies

max
Ω̄

|u− ua| ≤ max
∂Ω

|u− ϕa|+K sup
Ω

|f − fa|,
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证明. We WLOG assume that ||f ||∞ = supΩ |f | <∞. Now, we define ū(x) = max∂Ω |u|+
||f ||∞

(
eαd − eαx1

)
, where d > 0 and Ω ⊂ (0, d)× Rn−1. Applying L to ū we have

Lū = −a11α2eαx1 ||f ||∞ − b1αe
αx1 ||f ||∞ + cū

≤ ||f ||∞
(
−a11α2eαx1 − b1αe

αx1
)

≤
(
−λ0α

2 +Mα
)
eαx1 ||f ||∞

≤ f,

where α is taken so large that (−λ0α
2 +Mα) eαx1 ≤ −1. According to CP, we see that

ū ≥ u in Ω. Similarly, Lū ≤ −f(x) = −Lu, and ū
∣∣
∂Ω

≥ −u
∣∣
∂Ω

, which implies that
ū ≥ −u in Ω. Above all, we obtain

max
Ω̄

|u| ≤ max
∂Ω

|ū|

≤ max
∂Ω

|u|+
(
eαd − 1

)
||f ||∞.

1.3 Strong Maximum Principle for Second Order Elliptic
Differential Equations

Baby Example: Lu = u′′ ≥ 0 on (0, 1), and assume there is a local maximum point x0 of u
in (0, 1), then u ≡ u(x0) on (0, 1).
Physical Intuition: There should be no hot pots within a refrigerator.

1.3.1 Hopf Boundary Point Lemma

Definition 1.4. We say Ω satisfies interior sphere condition at x0 ∈ ∂Ω if there exists an
open ball B ⊂ Ω such that ∂B ∩ ∂Ω = {x0}.

Fact: If ∂Ω is C2-smooth, then Ω satisfies interior sphere condition.

Definition 1.5. We say ∂Ω is Cm-smooth m ≥ 0 if for all p ∈ ∂Ω, there is a neighborhood
N of p and shift & rotation of the coordinate system (x1, · · · , xn) such that

i. there is a Cm-smooth function ϕ defined in a nbhd Q ⊂ Rn−1 such that ∂Ω∩N is exactly
the graph of ϕ(x2, · · · , xn) = x1;

ii. Ω ∩N = {(x1,x′) ∈ N ;x1 > ϕ(x′)}.

证明. To prove the fact, we may without loss of generality assume that p = 0 and x1-axis is
the direction of inner normal of ∂Ω at p. Under this assumption, we know that ϕ(0′) = 0 and
∇ϕ(0′) = 0. By Taylor expansion at the origin, we have

ϕ(x′) =
1

2
(x′)TD2ϕ(0′)x′ + o(|x′|2), x′ ≈ 0′.
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Let C ′ > C be constants that are greater than the maximum eigenvalue of D2ϕ(0′), then we
further have that

ϕ(x′) ≤ C|x′|/2 + o(|x′|2) ≤ C ′|x′|/2, x′ ≈ 0′.

We construct a ball B centered at (R,0′) with radius R > 0. By definition we have for
points x ∈ B, x1 ≥ 1

2R
|x′|2 with equality holds only when x = 0, provided R is tiny. Thus

we’ve obtained a ball B above the graph of ϕ that intersects the boundary exactly at p.

Lemma 1.3.1. Hopf Boundary Point Lemma Assume Ω bounded, L strictly elliptic on
Ω, aij(x), bi(x) and c(x) are bounded on Ω. Let u ∈ C2(Ω) satisfies

• Lu ≥ 0 in Ω;

• u is continuous at x0 ∈ ∂Ω where the interior sphere condition is satisfied;

• x0 is a strictly local maximum point of u.

Then, for any outward pointing vector v⃗ at x0, i.e. v⃗ · (x0 − y) > 0 with y the center of the
interior ball, we have ∂u

∂v⃗
(x0) > 0 if it exists, provided one of the following statements holds

true:

1. c ≡ 0 in Ω.

2. c ≤ 0 in Ω and u(x0) ≥ 0.

3. u(x0) = 0, regardless of the sign of c.

证明. Let BR(y) be the interior ball that intersects the boundary at x0, R > ρ > 0, and
A = BR(y)\Bρ(y). We will construct a function v, such that

a. v ∈ C∞(Rn), Lv > 0 in A if c ≤ 0 in Ω;

b. v
∣∣
∂BR(y) ≡ 0;

c. ∂v
∂v⃗
(x0) < 0.

Now, define ω(x) = u(x)− u(x0) + ϵv(x), ϵ > 0 small. Then, we have by assumptions

Lω(x) = Lu(x)− c(x)u(x0) + ϵLv(x)

> Lu(x)− c(x)u(x0)

≥ 0,

and on the boundaries
ω
∣∣
∂BR(y) ≤ 0, if R is small enough,

and
ω
∣∣
∂Bρ(y)

< −δ + ϵv ≤ 0.
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WMP(c ≤ 0) implies that ω ≤ 0 in A. But ω(x0) = 0, this implies that ∂ω
∂v⃗

(x0) ≥ 0, and so
∂u
∂v⃗
(x0) > 0.

The above arguments only holds for the cases 1. and 2., as for case 3., we define

L0u = aijuij + biui + c−u = Lu− c+u ≥ 0, in Ω & close to x0.

Now, applying case 2. to L0 we obtain the same result.
We take v(x) = e−α|x−y|2 − e−αR2 , for all x ∈ Rn, where α > 0 is an undetermined

constant. We may observe that

∇v(x) = −2α(x − y)e−α|x−y|2 ,

which shows that ∂v
∂v⃗
(x0) = ∇v(x0) · v⃗ < 0. Meanwhile,

vij = −2αδije
−α|x−y|2 + 4α2(xi − yi)(xj − yj)e

−α|x−y|2 ,

and so

Lv = aijvij + bivi + cv

= −2aijαδije
−α|x−y|2 + 4aijα

2(xi − yi)(xj − yj)e
−α|x−y|2

− αbi(xi − yi)e
−α|x−y|2 + c

[
e−α|x−y|2 − e−αR2

]
≥ e−α|x−y|2 [4α2λ0|x − y|2 − 2αnM − 2αnMR−M

]
≥ e−α|x−y|2 [4α2λ0ρ

2 − 2α[nM − nMR]−M
]

> 0,

if α > 0 is taken large.

1.3.2 Strong Maximum Principle

Theorem 1.3.1. Strong Maximum Principle Let Ω be bounded and L strictly elliptic in
Ω with aij, bi and c bounded. Suppose u ∈ C2(Ω) ∩C0(Ω̄) satisfies Lu ≥ 0 in Ω, and maxΩ̄ u

is achieved at some x0 ∈ Ω. Then u(x) ≡ u(x0) in Ω, provided one of the following holds:

1. c ≡ 0.

2. c(x) ≤ 0 in Ω, u(x0) ≥ 0.

3. u(x0) = 0.

证明. Define Ω− = {u(x) < u(x0)}, and assume Ω− ̸= ∅. Then, we see that Ω− is open and
claim that ∂Ω− ∩ Ω ̸= ∅ by connectedness of Ω. Let x1 ∈ ∂Ω− ∩ Ω and x2 ∈ Ω− satisfying
dist(x1,x2) < dist(x2, ∂Ω). Increasing radius of a ball centered at x2, the ball will first touch
a point in ∂Ω−. Let x3 be the point, then Ω− satisfies interior sphere condition there, and an
simple application of Hopf’s boundary point lemma finishes the proof.

Examples:

11



1. Separation of Solutions

Baby Case: 
u′′ = f(x, u, u′), x ∈ (a, b),

v′′ = f(x, v, v′), f “nice”,

u ≥ v, on (a, b).

Then u ≡ v, provided u(c) = v(c) and u′(c) = v′(c).

PDE Case: Let Ω be bounded in Rn, Lu = aijuij + biui strictly elliptic, and aij , bi

bounded on Ω. Suppose u, v ∈ C2(Ω) satisfying

– Lz = f(x, z), x ∈ Ω, where for all M > 0, fz(x, z) bounded for all x ∈ Ω, z ∈
[−M,M ];

– u ≥ v in Ω;

– u(x0) = v(x0) for some x0 ∈ Ω.

Then u ≡ v in Ω.

证明. We will first restrict our consideration on Ωϵ = {dist(x, ∂Ω) > ϵ}, with ϵ > 0.
Since Ωϵ is compact, and u, v continuous on it, we may find some M > 0, by which the
two functions are bounded. Observe that

L(u− v) = f(x, u)− f(x, v)

=

∫ 1

0

fz(x, tu+ (1− t)v)(u− v)dt

= c(x)(u− v),

which is an equation of the formLw − cw = 0, in Ω

w ≥ 0, in ∂Ω,

where at x0 w reaches its local minimum 0. According to SMP(case 3.), we see w ≡ 0

in Ω.

2. Let u ∈ C2(Ω) ∩ C0(Ω̄), where Ω satisfies interior sphere condition at each p ∈ ∂Ω.∆u = 0 in Ω,

∂u
∂v⃗

∣∣
∂Ω

= 0, v⃗ outward pointing.

Then u is a constant.

证明. (can also use energy method) Let x0 ∈ Ω̄ such that maxΩ̄ u = u(x0).

case 1. x0 ∈ Ω, SMP implies that u ≡ u(x0).

12



case 2. x0 ∈ ∂Ω, then x0 is a strict local maximum point, and so by Hopf, ∂u
∂v⃗
(x0) > 0,

which is impossible.

Theorem 1.3.2. Comparison Principle (Robin Boundary Condition) Suppose Ω bounded,
L strictly elliptic on Ω and aij , bi, c bounded on Ω, c ≤ 0 on Ω, ∂Ω ∈ C2. u, v ∈ C2(Ω)∩C1(Ω̄)

satisfy Lu ≥ Lv, in Ω,

∂u
∂v⃗

+ β(x)u ≤ ∂v
∂v⃗

+ β(x)v, v⃗ outward pointing,

where β ≥ 0. Then u ≤ v in Ω.

证明. Let w = u− v, then Lw ≥ 0, in Ω,

∂w
∂v⃗

+ β(x)w ≤ 0, on ∂Ω.

Let M = maxΩ̄w, then if M ≤ 0, we are done. If M > 0, then let u(x0) =M , we have

Case 1. x0 ∈ Ω, then SMP(case 2.) implies that w ≡ M all over the domain, which contradicts
the boundary condition.

Case 2. max of w achieves only at boundary points, and so Hopf(case 2.) will also contradict
the boundary condition.

1.4 Weak Maximum Principle for Second Order Parabolic
Differential Equations

Baby Example: Let Ω ⊂ R3 be an “oven”, and u the temperature function in the oven. We
suppose u satisfies an equation of the following form

ut − aijuij + biui = f(x, t),

where f ≥ 0, which means that the oven is producing heat. Physically, one would find that
the oven should reach its minimum temperature near its boundary, because it’s producing
heat in the interior. We define Γ = Ω× {0} ∪ ∂Ω× [0, T ) and it can be shown that

min
Ω̄×[0,T ]

u = min
Γ
u.

Parabolic Boundary and Interior For a more general time-space domain D ⊂ Rn × [0, T ]

such that D̄ ∩ {t = 0} ̸= ∅ and D̄ ∩ {t = T} ̸= ∅, we define its parabolic boundary to be
∂D ∩ {0 ≤ t < T}. At the meantime, D̄\Γ will be called the parabolic interior of D. It can
be shown that every slice set in time variable of a parabolic interior is open in Rn.

13



We now consider operators of the form

Lu = ut − aijuij + biui + cu,

and we would say L strictly parabolic in D if there is a positive constant λ0 > 0 such that

(aij) ≽ λ0I,

all over the parabolic interior.

Theorem 1.4.1. WMP(c ≡ 0) Assume L is strictly parabolic in D with c ≡ 0, and let
u ∈ C0(D̄) ∩ C2,1(D̄\Γ) satisfies Lu ≤ 0, (x, t) ∈ D̄\Γ. Then

max
D̄

u = max
Γ

u.

证明. Special Case: Lu < 0 in D̄\Γ. Let (x0, t0) ∈ D̄ such that u(x0, t0) = maxD̄ u.

Case 1. (x0, t) ∈ Γ, trivial;

Case 2. Otherwise, we have ut(x0, t0) = 0 and ∇xu(x0, t0) = 0, and (uij(x0, t0) ≼ 0). These
calculations force Lu(x0, t0) ≥ 0, which contradicts the assumption.

General Case: Lu ≤ 0 in D̄\Γ. Let v = u − ϵt, then Lv = Lu − ϵ < 0 in D̄\Γ. With
the special case applied to v, we see that maxD̄ v = maxΓ v. Letting ϵ→ 0, we are done.

Remark:The conclusion above holds even if L is degenerate parabolic, i.e. aij ≽ 0.

Theorem 1.4.2. WMP(c ≥ 0) Suppose u ∈ C0(D̄) ∩ C2,1(D̄\Γ) satisfies Lu ≤ 0 in D̄\Γ.
Assume that L is degenerate parabolic on D̄\Γ. Then

max
D̄

u ≤ max
Γ

u+.

Theorem 1.4.3. Let L be degenerate parabolic on D̄\Γ with c bounded from below on D̄\Γ.
Suppose u ∈ C0D̄ ∩ C2,1(D̄\Γ) satisfies

Lu ≤ 0 in D̄\Γ, u
∣∣
Γ
≤ 0,

then
u ≤ 0 in D̄.

证明. Let M be the lower bound of c, and multiply Lu by eMt. Let v = eMtu, then

eMtLu = vt − aijvij + bivi + (c−M)v = L∗v.

Here v satisfies conditions in WMP(c ≥ 0), and so

max
D̄

v ≤ max
Γ

v+,

which forces maxD̄ u ≤ 0.
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Corollary 1.4.1. Comparison Principle Assume L is degenerate parabolic on D̄\Γ, c
bounded from below on D̄\Γ. u, v ∈ C0(D̄) ∩ C2,1(D̄\Γ) satisfiesLu ≤ Lv, on D̄\Γ,

u ≤ v, on Γ.

Then u ≤ v all over the domain.

1.5 Strong Maximum Principle for Second Order Parabolic
Differential Equations

Baby model: Lu ≤ 0 in a rigid domain (the corresponding time-space domain is a cylinder-
type domain). Then if u takes its maximum value at (x0, t0) in the parabolic interior, u will
be a constant before time t0.

1.5.1 Baby Hopf Boundary Point Lemmas

Lemma 1.5.1. Baby Hopf 1 Let B−
R = {(x, t) ∈ Rn+1; |x|2 + (t − R)2 < R2, 0 < t ≤ R}

be a half ball. Suppose L is strictly parabolic on B−
R , aij , bi&c are bounded on B−

R . Let
u ∈ C2,1(B−

R )∩C0(B−
R ) satisfy Lu ≤ 0 on B−

R . Assume there is a P0 = (x0, t0) ∈ Γ such that
x0 ̸= 0, u(x0, t0) > u(x, t) for all (x, t) ∈ B−

R\{P0}. Then for any outward pointing vector
v⃗ ∈ Rn+1 at P0, we have

∂u

∂v⃗
(P0) > 0,

provided one of the following is satisfied:

1. c ≡ 0 in B−
R .

2. c ≥ 0 in B−
R and u(P0) > 0.

3. u(P0) = 0 regardless of c.

证明. Define Σ = {(x, t) ∈ B−
δ ; |x| > |x0|/2}. We will construct v ∈ C∞(Rn+1) such that

a. Lv < 0 in Σ if c ≥ 0 on B−
R ;

b. v
∣∣
Γ
B

−
R

≡ 0;

c. ∂v
∂v⃗
(P0) < 0.

With this, we define w(x, t) = u(x, t)− u(P0) + ϵv(x, t). Then

• Lw = Lu− cu(P0) + ϵLv ≤ ϵLv < 0 on Σ;

• w
∣∣
ΓΣ

≤ 0 if ϵ is tiny.
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With WMP(c ≥ 0) applied to w on Σ, we obtain that w ≤ 0 on Σ. But w(P0) = 0 and so
∂w
∂v⃗

(P0) ≥ 0 implies that ∂u
∂v⃗
(P0) ≥ −ϵ∂v

∂v⃗
(P0) > 0, which leads to the conclusion in case of 1.

and 2.. If 3. holds, we see

0 ≥ Lu = ut − aijuij + biui + c+u+ c−u ≥ ut − aijuij + biui + c+u =: L∗u,

from where we return to case 2..
To construct such a v, we define v(x, t) = e−α(|x|2+(t−R)2) − e−αR2 , with α > 0 to be deter-
mined. Thus b. is immediately satisfied. Observe that

∇(x,t)v = e(··· ) ((−2αx),−2α(t−R))
T
,

and so
∂v

∂v⃗
(P0) = −2αe(··· )(x0, t0 −R) · v⃗ < 0,

which satisfies condition c.. Finally, we have

vij = −2αe(··· )δij + 4α2xixje
(··· ),

which gives

Lv = −2αe(··· )(t−R) + 2αe(··· )aijδij − 4α2xixjaije
(··· )

+ bi
(
−2αie

(··· ))+ c
[
e(··· ) − e−αR2

]
≤ e(··· )

[
−4α2λ0|x0|2/4 + 2α(R+Mn+MnR) +M

]
in Σ

< 0, if α is huge.

Remark:

1) This lemma is true if B−
R is replaced by BR, provided P0 is neither the south pole nor

the north.

2) True if B−
R is shifted but not rotated.

Corollary 1.5.1. This lemma can be naturally extended to any time-space domain with bound-
ary that satisfy interior sphere condition, in which the interior sphere does not touch the
“maximum point” at either the north or the south pole.

Lemma 1.5.2. Baby Hopf 2 let Q(R, h) = {(x, t) ∈ Rn ×R; |x| < R, 0 < t ≤ h}. Suppose
L is strictly parabolic on Q(R, h) and aij , bi, c bounded. Let u ∈ C2,1(Q) ∩ C0(Q̄) satisfy
Lu ≤ 0 in Q. If u(0, h) > u(x, t) for all |x| < R, 0 < t < h, then ut(0, h) > 0, provided one
of the following holds:

1. c ≡ 0 in Q.

2. c ≥ 0 in Q, u(0, h) ≥ 0.
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3. u(0, h) = 0.

证明. Take a large ρ > 0 and small δ > 0, such that N := Bρ(0, h − ρ) ∩ {t > h − δ} ⊂ Q.
We shall construct v ∈ C∞(Rn+1) such that

a. Lv < 0 in N ;

b. v
∣∣
∂Bρ(0,h−ρ)

≡ 0;

c. vt(0, h) < 0.

Now, let w(x, t) = u(x, t) − u(0, h) + ϵv(x, t). Then Lw = Lu − cu(0, h) + ϵLv < 0 in
N if c ≥ 0 in Q. Meanwhile, w

∣∣
ΓN

≤ 0. Applying WMP(c ≥ 0) to w we obtain maxN̄ w ≤
maxΓN

w+ = 0. Then w ≤ 0 all over N . But w(0, h) = 0, then ∂w
∂t
(0, h) ≥ 0, and so

ut(0, h) > 0.

To construct such a v, we define

v(x, t) = ρ2 − |x|2 − (t− h+ ρ)2.

Then it’s clear that v satisfies b.. And vt(0, h) = −2ρ < 0 fulfills c.. Finally, we have

Lv = −2(t− h+ ρ) + 2aijδij + bi(−2xi) + cv

≤ −2(h− δ − h+ ρ) + 2nM + 2nMR+ cv

≤ −2(ρ− δ) + 2nM + 2nMR+ 2δρM

< 0, if ρ large, and δ small.

Now, we’ve shown ut(0, h) > 0 if either 1. and 2. holds. As for case 3., we see u ≤ 0 all
over Q, and as before neglect c−u to return to case 2..

Corollary 1.5.2. The conditions that appear in Baby Hopf 2 cannot be satisfied at the same
time.

证明.
0 ≥ Lu(0, h) = ut(0, h)− aijuij(0, h) + biui(0, h) + cu(0, h) > 0.

This corollary leads us to prove that the maximum point can only appear on the boundary.

1.5.2 Strong Maximum Principle

Let D be a time-space domain, and p ∈ D. We collect all the points q in D such that
there is a continuous path γ in D connecting them, which is non-decreasing in time t and
denote this set by S(p).
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Theorem 1.5.1. Strong Maximum Principle Suppose L is strictly parabolic on D, aij , bi, c
bounded. Let u be a nice function that satisfy Lu ≤ 0 in D̄. If there is a p0 = (x0, t0) ∈ D̄\Γ
such that u(p0) = maxD̄ u =:M , then u ≡ u(p0) all over S(p0), provided one of the following
holds:

1. c ≡ 0 in D;

2. c ≥ 0 in D and u(p0) ≥ 0;

3. u(p0) = 0, regardless of the sign of c.

证明. Let F = {(x, t) ∈ D̄; u(x, t) =M}, dp0
= dist(p0,Γ) > 0.

Claim 1. Bdp0
/3(p0) :== {(x, t0); |x − x0| ≤ dp0

/3} ⊂ F . Otherwise there is a point p̄ = (x̄, t) in
the ball such that u(p̄) < M . Let δ = dist(p̄, F ) > 0 and define a semi-ellipsoid

Eσ =

{
(x, t); |x − x̄|2

(σδ)2
+

(t− t0)
2

δ2
< 1, t ≤ t0

}
, σ > 0.

If 0 < σ < 1, Eσ ∩ F = ∅, by definition of δ. If σδ ≥ dp0
/3, p0 ∈ Eσ implies that

Eσ ∩ F ̸= ∅. Therefore we see that:

Sub-claim 1. Increasing σ we have that Eσ touches F before touching Γ.

Sub-claim 2. The touching point Q0 is at neither the south nor the north pole. Otherwise |p̄Q0| =
δ ≥ dist(p̄, F ) = 2δ, which is impossible.

Now we can construct a ball B inscribed in Eσ “tangent” to F at Q0, with Q0 not the
south or north pole of B. Baby Hopf 1 implies that for an outward pointing vector v⃗,
∂u
∂v⃗
(Q0) > 0. However, by sub-claim 1., Q0 ∈ D̄\Γ andQ0 ∈ F , we see that ∇(x,t)u(Q0) =

0.

Claim 2. Define C(p0) = S(p0) ∩ {t = t0}, then C(p0) ⊂ F . This is because C(p0) is connected,
and by claim 1 and definition of F , C(p0) ∩ F is both open and closed in C(p0). This
also tells us that once a point p is in F , then C(p) will be contained in F .

Claim 3. u ≡ M on S(p0). Otherwise there is a Q = (x2, t2) ∈ S(p0) such that u(Q) < M . Let
p1 = (x1, t1) be a point on the arc Q̃p0 such that u < M on Q̃p1 and u(p1) = M . By
claim 2., C(p1) ⊂ F , and S(p0) is already split by C(p1). Now, we construct a cylinder
Qp1

(R, h) = {(x, t); |x − x1| < R, t1 − h < t ≤ t1} with R, h tiny, then with a simple
application of Baby Hopf 2, we are done.

Application: Let Ω be bounded in Rn with ∂Ω ∈ C2, D = Ω× (0, T ), S = ∂Ω× [0, T ]. Also
let Lu = ut − aij(x, t)uij + bi(x, t)ui + f(x, t, u) and define boundary operator to be

Bu =
∂u

∂v⃗
+ β(x, t)u, β ≥ 0, on S.
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Theorem 1.5.2. Comparison Principle Assume u, v ∈ C2,1(D̄) satisfy
Lu ≥ Lv, in D̄\Γ,

Bu ≥ Bv, on S,

u
∣∣
t=0

≥ v
∣∣
t=0
, on Ω̄.

Suppose L is strictly parabolic on D, aij , bi bounded on D̄\Γ. For all (x, t) in the parabolic
interior, fu(x, t, u) exists for any u ∈ (−∞,+∞). For any R > 0, there is M > 0 such that

|fu(x, t, u)| ≤M, ∀(x, t) ∈ D̄\Γ, |u| ≤ R.

Then u ≥ v on D̄. If u
∣∣
t=0

̸= v
∣∣
t=0

, then u(x, t) > v(x, t), t > 0, x ∈ Ω̄.

Remark: This also holds if Bu = u on S, in which case “x ∈ Ω̄” will be replaced by “x ∈ Ω”.

证明. Let w = u − v. Then f(x, t, u) − f(x, t, v) = c(x, t)w, where c is bounded in the
parabolic interior. If m := minD̄ w < 0 is achieved inside the parabolic interior, then by SMP
we see w

∣∣
t=0

= m which can only be 0 or does not occur. If m is achieved on the parabolic
boundary, then we only have worry about S. Applying Baby Hopf 1, we may see it’s not the
case.
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Chapter 2

Sobolev Space Theory

2.1 Distributions and Fundamental Solution

2.1.1 Distributions

Preparations: Let Ω ⊂ Rn be a domain and D(Ω) := C∞
0 (Ω) the space of all definitely

differentiable functions that have compact support in Ω. The space D(Ω) is not empty:

j(x) =

ce
1

|x|2−1 , x ∈ Rn, |x| < 1;

0, else,

where c is chosen that the integral of j over the whole space is 1, then one can show that j is
in C∞

0 (Rn), with support the unit ball centered at the origin. Now, if we set

jϵ,y(x) =
1

ϵn
j

(
x − y
ϵ

)
,

we see the integral of jϵ,y is still 1 and it has support the ball of radius ϵ centered at y. Let
y be a point in Ω, then when ϵ is small enough, jϵ,y is in D(Ω).

Definition 2.1. A distribution on D(Ω) is a linear functional

f : D(Ω) → R

ϕ 7→< f, ϕ >

such that f is continuous in the sense that for any sequence {ϕk} ⊂ D(Ω):

i. Supp{ϕk} ⊂⊂ Ω, ∀k ≥ 1;

ii. If for all α = (α1, · · · , αn) ∈ Nn,

∥∂αϕk∥L∞(Ω) → 0, as k → ∞,

we have < f, ϕk >−→ 0 as k → ∞.
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We shall denote by D′(Ω) the set of all distributions.

Examples:

i. Let f ∈ L1
loc(Ω) the space of all locally integrable functions. With this function we may

define a functional on D(Ω) as follows:

ϕ ∈ D(Ω)
F−→
∫
Ω

f(x)ϕ(x)dx ∈ R.

One may find that the functional F ∈ D′(Ω), because given test functions {ϕk}, we only
have to check that

| < F, ϕk > | =
∣∣∣∣∫

Ω

f(x)ϕk(x)dx
∣∣∣∣

≤
∫
Ω

|f ||ϕk|

≤ ∥ϕk∥L∞

∫
Ω

|f |

k→∞−→ 0.

Here, we would like to call F the functional induced by f , and we shall not distinguish
them in the following contexts

ii. Suppose f ∈ D′(Ω), and g definitely differentiable, then f · g defined by

ϕ ∈ D(Ω) →< f, gϕ >

is still a distribution.

iii. Fix y ∈ Ω, we define
ϕ ∈ D(Ω)

δy−→ ϕ(y),

and it is indeed a distribution. This kind of distribution is called δ-function (or Dirac
function).

Definition 2.2. Let fk be a sequence of distributions, and f another one. We say fk → f as
k → ∞ if for all fixed test function ϕ, < fk, ϕ >

k→∞−→< f, ϕ >.

Theorem 2.1.1. Let fk be a sequence of integrable functions such that

i. fk concentrates at a point in the following sense:

∀δ > 0,

∫
{|x−y|≥δ}∩Ω

|fk(x)|dx k→∞−→ 0,

ii.
∫
Ω
fk

k→∞−→ A ∈ R and fk uniformly bounded by M > 0 in L1.

Then fk converges to Aδy in the sense of distributions.
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证明. Given a test function ϕ, we see Aϕ(y) = limk→∞
∫
Ω
fkϕ(y), and so it suffices to show∫

Ω

|fk(x)||ϕ(x)− ϕ(y)|dx k→∞−→ 0.

For ϵ > 0, we choose δ > 0 such that |ϕ(x)− ϕ(y)| < ϵ for all |x − y| < δ. Then the integral
splits into two parts: one inside the ball Bδ(y) and another outside it, which finally gives the
bound Mϵ+ 2 ∥ϕ∥L∞

∫
Ω∩Bδ(y)c |fk| and hence the convergence.

Examples:

i. Fix y ∈ Ω, then jϵ,y converges to δy in the sense of distributions;

ii. Suppose f ∈ D(Ω) is Riemann integrable on [0, 1]. Let Pk be a sequence of partitions of
[0, 1] such that ||Pk|| −→ 0 as k → ∞. Then

nk∑
i=1

f(xki )ϕ(x
k
i )∆x

k
i

k→∞−→
∫ 1

0

f(x)ϕ(x)dx,

for any test function ϕ. Now, the left hand side can be written as<
∑nk

i=1 f(x
k
i )δxk

i
∆xki , ϕ >,

which gives the fact that
nk∑
i=1

f(xki )δxk
i
∆xki −→ f, k → ∞,

in the sense of distribution;

iii. Heat kernal Γ(x, t) = 1

4πkt
e−

|x|2
4kt . We have

Γ(x, t) t→0+−→ δ0,

in the sense of distributions.

2.1.2 Derivatives of Distributions

Motivation: Let f ∈ C1(Ω), which along with its partial derivatives is clearly locally inte-
grable. Observe that

<
∂f

∂xi
, ϕ > =

∫
Ω

∂f

∂xi
(x)ϕ(x)dx

=

∫
Ω

[
∂

∂xi
(fϕ)− f

∂ϕ

∂xi

]
dx

= −
∫
Ω

f
∂ϕ

∂xi
dx +

∫
Ω

∇ · F⃗ dx

= −
∫
Ω

f
∂ϕ

∂xi
dx +

∫
∂Ω

F⃗ · n⃗ds

= −
∫
Ω

f
∂ϕ

∂xi
dx,

where F⃗ = (0, · · · , 0, fϕ, 0, · · · , 0)T , with fϕ at the i-th position.
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Definition 2.3. For every f ∈ D′(Ω), ϕ ∈ D(Ω), i = 1, · · · , n, we define

<
∂f

∂xi
, ϕ >= − < f,

∂ϕ

∂xi
> .

More generally, let α ∈ Nn and we define

< ∂αf, ϕ >= (−1)|α| < f, ∂αϕ > .

Remark: If the distribution has continuous partial derivatives, then its corresponding dis-
tributional derivatives coincide with them in the sense of distribution.
Example: Let

H(x) =

0, if x < 0;

1, if x ≥ 0.

H is called the Heaviside function. It can be shown that H ∈ D′(Ω), and for any ϕ ∈ D(R),
we have

< H ′, ϕ > = − < H,ϕ′ >

= −
∫ ∞

−∞
H(x)ϕ(x)dx

= −
∫ ∞

0

ϕ′(x)dx

= −ϕ(∞) + ϕ(0)

= ϕ(0)

=< δ0, ϕ > .

2.1.3 Distributional Solutions to PDEs

Consider a partial differential operator on Ω

Lu =
m∑

|α|=0

Aα(x)∂αu,

with all Aα smooth. If u is a distribution, then Lu is still a distribution with

< Lu, ϕ > =
m∑

|α|=0

< Aα∂
αu, ϕ >

=
m∑

|α|=0

(−1)|α| < u, ∂α(Aαϕ) >

=< u,
m∑

|α|=0

(−1)|α|∂α(Aαϕ) >

=:< u,L∗ϕ >,

where L∗ is called the formal adjoint of L. The formal adjoint of the famous operator Laplcian
“−∆” is itself.
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Definition 2.4. Consider PDE Lu = f - on Ω, with f a distribution. We say u is a
distributional solution of - if Lu = f in the sense of distribution.

Fundamental Solution: Now, we focus on a PDE −∆u = δ0 in Rn. A solution of this
equation is called the fundamental solution of −∆u = 0. Because δ0 is radial, we expect the
solution is also radial, i.e. u = u(r). Recall that −∆u = −urr− (n− 1)ur/r = δ0, we see that

urr + (n− 1)ur/r = 0, if r > 0.

Now, we have (rn−1ur)r = 0, and so ur = c/rn−1. When n = 2, u = c ln r, and when n ≥ 3,
u = c/rn−2. What is the constant c?

“Tanglang Street” Method: When n = 2, we have

−∆u = δ0

=⇒ −(urr + ur/r) = δ0

=⇒ −(rur)r = rδ0

=⇒
∫ r

0

−(rur)rdr =

∫ r

0

rδ0dr

=⇒ −rur =
∫ r

0

rδ0dr

=⇒ −rur · 2π =

∫
|x|<r

δ0(x)dx

=⇒ ur = − 1

2π
ln r.

“Ivory Tower” Method: We regularize c ln r by c
2

ln (r2 + ϵ2) =: uϵ(x), with ϵ > 0 small.
Observe that uϵ is smooth for each index, and we may compute

−∆uϵ =
2cϵ2

(r2 + ϵ2)2
.

Now it’s easy to show that this is an approximation to the identity multiplied by −2πc, i.e.

−∆uϵ −→ −2πcδ0

as ϵ→ 0 in the sense of distributions. Now we have

lim
ϵ→0

< −∆uϵ, ϕ >=< 2πcδ0, ϕ >

=⇒ lim
ϵ→0

< uϵ,−∆ϕ >= RHS

=⇒ lim
ϵ→0

∫
R2

uϵ(x)(−∆ϕ(x))dx = RHS

| ln r| ∈ L1
(
B1/2(0)

)
, and we may apply LDCT

=⇒ LHS =

∫
R2

u (−∆ϕ) dx =< −∆(c ln r), ϕ >,
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which implies that −∆(c ln r) = −2πcδ0 in the sense of distributions and that it suffices to
choose c = − 1

2π
.

“Tanglang Street” Method: When n ≥ 3, we see similarly

−∆u = δ0

=⇒ −(urr + (n− 1)ur/r) = δ0

=⇒ −(rn−1ur)r = rn−1δ0

=⇒
∫ r

0

−(rn−1ur)rdr =

∫ r

0

rn−1δ0dr

=⇒ −rn−1ur =

∫ r

0

rn−1δ0dr

=⇒ −rn−1ur

∫
|σ|=1, σ∈Rn

dσ =

∫
|x|<r

δ0(x)dx

=⇒ ur = − 1

|Sn−1|rn−1
,

which gives u(r) = 1
(n−2)n|B1(0)|rn−2 =: Γ(x).

“Ivory Tower” Method: To show −∆Γ = δ0 in the sense of distribution, i.e.

< Γ,−∆ϕ >=< δ0, ϕ >,

for all test function ϕ. To this end, we again regularize Γ(x) as

Γϵ(x) =
1

(n− 2)n|B1(0)|(r2 + ϵ2)(n−2)/2
, ϵ > 0.

Question: ∫
Rn

Γϵ(−∆ϕ) −→
∫
Rn

Γ(−∆ϕ)? ,
Answer: Yes! Observe that ϕ is smooth and compactly supported, then there exist big R

and M > 0 such that Supp{−ϕ} ⊂ BR(0), | −∆ϕ| ≤M and so

|Γϵ(−∆ϕ)| ≤ cnMχBR(0) ·
1

rn−2
∈ L1(Rn).

where cn = 1
(n−2)n|B1(0)| . Applying LDCT, one can prove the answer. On the other hand, we

check that −∆Γϵ converges to δ0

i.
∂Γϵ

∂r
= (2− n)cn(r

2 + ϵ2)−n/2r,

and

∂2Γϵ

∂2r
= cn(2− n)

[
−n
2
(r2 + ϵ2)−(n+2)/2 · 2r2 + (r2 + ϵ2)−n/2

]
=
cn(n− 2) [(1− n)r2 + ϵ2]

(r2 + ϵ2)(n+2)/2
.
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Thus

−∆Γϵ = −
(
∂2Γϵ

∂2r
+
n− 1

r

∂Γϵ

∂r

)
= cn(n− 2)

nϵ2

(r2 + ϵ2)(n+2)/2

=
ϵ2

|B1(0)|(r2 + ϵ2)(n+2)/2
,

which implies that∫
Rn

| −∆Γϵ(x)|dx =

∫
|σ|=1

∫ ∞

0

ϵ2

|B1(0)|(r2 + ϵ2)(n+2)/2
rn−1drdσ.

Let r = ϵ tan(θ), then dr = ϵ sec2(θ)dθ, and then

RHS =
|Sn−1|
|B1(0)|

ϵ2
∫ π/2

0

(tan(θ))n−1ϵn sec2(θ)
ϵn+2(sec(θ))n+2

dθ

= n

∫ π/2

0

(sin(θ))n−1

(cos(θ))n−1
(cos(θ))ndθ

= n

∫ π/2

0

(sin(θ))n−1d sin(θ)

= 1.

ii.
∫
Rn Γϵ(x)dx = 1 ;

iii. For a fixed δ > 0, we have∫
|x|>δ

| −∆Γϵ(x)|dx = n

∫ π/2

arctan δ
ϵ

(sin(θ))n−1 cos(θ)dθ

−→ 0,

as ϵ→ 0.

Remark: For a fixed y ∈ Rn we have in the sense of distribution Γy(x) := Γ(x − y) satisfies
the equation −∆xu = δy.

Poisson Equation:

−∆u(x) = f(x), x ∈ Rn,

where f denotes the density of charges and u the corresponding electric potential. Let f(y)dy
be the total charges of a small piece of electric material near y, then its electric potential at
x is approximately given by Γ(x − y)f(y)dy, and so it is reasonable to guess the observed
potential should be

u(x) =
∫
Rn

Γ(x − y)f(y)dy.
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“Tanglang Street” Method: Check

−∆x

∫
Rn

Γ(x − y)f(y)dy =

∫
Rn

−∆x(Γ(x − y))f(y)dy

=

∫
Rn

δ(x − y)f(y)dy

= f(x).

“Ivory Tower” Method:

Theorem 2.1.2. Suppose f ∈ C2
0 (Rn), and let

u(x) =
∫
Rn

Γ(x − y)f(y)dy,

then u ∈ C2(Rn) and −∆u(x) = f(x) for all x ∈ Rn.

证明. Since f is C2-smooth and compactly supported, u(x) is well-defined. Let ei = (0, · · · , 0, 1, 0, · · · , 0)T ,
with 1 at the i-th position, then we have

u(x + hei)− u(x)
h

=

∫
Rn

Γ(z)f(x + hei − z)− f(x − z)
h

dz

=

∫
Rn

Γ(z) ∂f
∂xi

(x + s(h)ei − z)dz,

where fxi
is bounded and compactly supported and Γ is locally integrable. According to

LDCT, we have

lim
h→0

u(x + hei)− u(x)
h

=

∫
Rn

Γ(z) lim
h→0

f(x + hei − z)− f(x − z)
h

dz

=

∫
Rn

Γ(z) ∂f
∂xi

(x − z)dz,

which exists and continuous (shown in a similar way.) In the same manner, one can handle
the second derivatives, which immediately show that the integral function satisfies Poisson
equation.

Remark: This integral function is called Newtonian Potential.

2.2 Weak Derivatives

Definition 2.5. Suppose u ∈ L1
loc(Ω) and its distributional derivative ∂αu can be realised by

a locally integrable function v, then we say v is the weak α-th partial derivative of u, and
simply write v = ∂αu.

Remark: If u ∈ C |α|(Ω), then its weak derivative is exactly the classical one.

Definition 2.6. We say u ∈ L1
loc(Ω) is k-times weakly differentiable if all weak derivatives

∂αu with |α| ≤ k exist. The set of all such u is denoted by W k(Ω).
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Example: Let u(x) = |x| defined on the real line, then the weak derivative of it is

u′(x) =


1, if x > 0,

−1, if x < 0,

0, else.

What about u′′? The answer is that it does not exist: If weak u′′ exists and equals v(x), then
v is locally integrable and for all test function ϕ we have∫ ∞

−∞
v(x)ϕ(x)dx =

∫ ∞

−∞
u(x)ϕ′′(x)dx

=

∫ ∞

0

u(x)ϕ′′(x)dx+

∫ 0

−∞
u(x)ϕ′′(x)dx

= uϕ′
∣∣∣∣x=∞

x=0

−
∫ ∞

0

u′(x)ϕ′(x)dx+ uϕ′
∣∣∣∣x=0

x=−∞
−
∫ 0

−∞
u′(x)ϕ′(x)dx

= 2ϕ(0).

Recall that

j(x) = j(x) =

ce
1

|x|2−1 , x ∈ Rn, |x| < 1;

0, else,

and we set ϕϵ = j(x/ϵ). Thus we see |v(x)ϕϵ(x)| ≤ j(0)|v(x)|χB1
(x) if ϵ < 1, which is

integrable. According to LDCT, RHS ≡ 2j(0) while LHS converges to 0, as ϵ→ 0.

2.2.1 Approximate Bad Functions by Good Ones

Definition 2.7. For all u ∈ L1
loc(Ω), the regularization of u is

uϵ(x) =
∫
Ω

jϵ(x − y)u(y)dy,

where 0 < ϵ < dist(x, ∂Ω), and jϵ(z) = 1
ϵn
j(z

ϵ
).

Remark:

1. uϵ is well-defined because

|jϵ(x − y)u(y)| ≤ ∥jϵ∥∞ |u(y)|χBϵ(x)(y),

which is integrable.

2. If u is integrable on Ω, then for all x ∈ Rn and ϵ > 0 we define

uϵ(x) =
∫
Rn

jϵ(x − y)u(y)dy,

where we extend u by letting it to be 0 outside Ω. Then uϵ(x) = jϵ ∗ u(x).
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Lemma 2.2.1. For any fixed ϵ > 0, uϵ ∈ C∞(Ωϵ), where Ωϵ = {x ∈ Ω; dist(x, ∂Ω) > ϵ}.
Moreover, if u ∈ L1(Ω), then uϵ ∈ C∞(Rn). Also, if Ω is bounded, then Supp{uϵ} is bounded
and uϵ ∈ C∞

0 (Rn).

证明. Let ei = (0, ·, 0, 1, 0, · · · , 0)T , with 1 at the i-th position. For any fixed x ∈ Ωϵ, we
consider

uϵ(x + hei)− uϵ(x)
h

=

∫
Ω

jϵ(x + hei − y)− jϵ(x − y)
h

u(y)dy

=

∫
Ω

∂

∂xi
jϵ(x + δ(h)ei − y)u(y)dy,

where 0 ≤ δ(h) ≤ h, and∣∣∣∣ ∂∂xi jϵ(x + δ(h)ei − y)u(y)
∣∣∣∣ ≤ ∥∥∥∥ ∂jϵ∂xi

∥∥∥∥
∞
|u(y)|χBϵ+h(x)(y)

≤
∥∥∥∥ ∂jϵ∂xi

∥∥∥∥
∞
|u(y)|χBl(x)(y),

with ϵ < l < dist(x, ∂Ω) and h small. Now, applying LDCT we see

lim
h→0

uϵ(x + hei)− uϵ(x)
h

=

∫
Ω

∂

∂xi
jϵ(x − y)u(y)dy.

Now, suppose xk is a sequence of points in Ωϵ such that xk
k→∞−→ x in Ωϵ. Then we have∣∣∣∣∂uϵ∂xi

(xk)−
∂uϵ
∂xi

(x)
∣∣∣∣ ≤ ∫

Ω

∣∣∣∣ ∂jϵ∂xi
(x − y)− ∂jϵ

∂xi
(xk − y)

∣∣∣∣ |u(y)|dy

the integrand is dominated by an integrable function 2

∥∥∥∥ ∂jϵ∂xi

∥∥∥∥
∞
|u(y)|χBδ(x)(y)

−→ 0, as k → ∞.

Similar proofs show that uϵ ∈ C∞(Ωϵ). When u is integrable, then uϵ is smooth all over the
space. If further Ω is bounded, then we take x such that dist(x, Ω̄) > ϵ, and observe that
jϵ(x − y) ≡ 0 as a function in y.

Lemma 2.2.2. If u ∈ C0(Ω), then for any Ω′ ⊂⊂ Ω (Ω′ ⊂ Ω)

uϵ
ϵ→0−→ u,

on Ω′ uniformly.

证明. Let ϵ ∈ (0, dist(Ω′, ∂Ω)), then

uϵ(x) =
∫
Ω

jϵ(x − y)u(y)dy

is well-defined on Ω′, and we may observe that the integrand supports on a small ball Bϵ(x).
If we let z = x−y

ϵ
, we see dz = 1

ϵn
dy and

uϵ(x) =
∫
B1(0)

j(z)u(x − ϵz)dz.
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Now, we rewrite u(x) =
∫
B1(0) j(z)u(x)dz and observe that

|uϵ(x)− u(x)| ≤
∫
B1(0)

j(z)|u(x − ϵz)− u(x)|dz.

On a slightly larger domain Ω′′ (Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω), we know u is uniformly continuous, and
so we are done.

Lemma 2.2.3. Let 1 ≤ p <∞, u ∈ Lp
loc(Ω) (Lp), then uϵ

ϵ→0−→ u in Lp
loc(Ω).

证明. We want to show for any Ω′ ⊂⊂ Ω∫
Ω′

|uϵ(x)− u(x)|pdx ϵ→0−→ 0.

Recall that
uϵ(x) =

∫
B1(0)

j(z)u(x − ϵz)dz,

we have

∥uϵ − u∥Lp(Ω′) =

∥∥∥∥∫
B1(0)

j(z) (u(· − ϵz)− u(·)) dz
∥∥∥∥
Lp(Ω′)

≤
∫
B1(0)

j(z) ∥u(· − ϵz)− u(·)∥Lp(Ω′) dz.

As before, we consider an intermediate domain Ω′′ and redefine u by setting it to be 0 outside
Ω′′. Now,

∥uϵ − u∥Lp(Ω′) ≤
∫
B1(0)

j(z) ∥u(· − ϵz)− u(·)∥Lp(Rn) dz,

and by continuity of Lp(Rn)-norm in spacial translation, we see

∥u(· − ϵz)− u(·)∥Lp(Rn)

ϵ→0−→ 0

uniformly for z ∈ B1(0). Thus we obtain the Lp(Ω′) convergence.

Remark:

1. In the case of u ∈ Lp(Ω), uϵ ∈ C∞(Rn), and

|uϵ(x)| =
∣∣∣∣∫

Ω

jϵ(x − y)u(y)dy
∣∣∣∣ ≤ (∫

Ω

|u(y)|pdy
)1/p

·
(∫

Ω

|jϵ(x − y)|p′
dy
)1/p′

,

which implies that uϵ is well-defined.

2. C∞
0 (Ω) is dense in Lp(Ω) with 1 ≤ p < ∞. For k ≥ 1, we define Ωk = {x ∈

Ω; dist(x, ∂Ω) > 1/k, |x| < k}. Letting uk(x) = u(x)χΩk
(x) ∈ Lp(Ω), we see uk

converges to u in Lp(Ω) according to LDCT. For fixed k ≥ 1, we apply Lemma (2.2.3)
and find that

(uk)ϵ
ϵ→0−→ uk, in Lp(Ω),

where ϵ is taken so small that Supp{(uk)ϵ} ⊂⊂ Ω.
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3. Lemma (2.2.3) is not true when p = ∞.

Corollary 2.2.1. Well-definedness of Weak Derivatives Let u ∈ L1
loc(Ω), and suppose

that v1, v2 ∈ L1
loc(Ω) are α-th derivatives of u, then v1 = v2 a.e. on Ω.

证明. By definition, we have∫
Ω

v1ϕ = (−1)|α|
∫
Ω

u∂αϕ =

∫
Ω

v2ϕ, ϕ ∈ D(Ω)

and so ∫
Ω

(v1 − v2)ϕ = 0.

Replacing ϕ by jϵ(x − y) and applying Lemma (2.2.3) we are done.

Lemma 2.2.4. If u ∈ L1
loc(Ω) and weak ∂αu exists. Then for any x ∈ Ωϵ

Classical ∂αuϵ(x) = (∂αu)ϵ (x).

证明. By Lemma (2.2.1), we have

∂αuϵ(x) =
∫
Ω

∂αjϵ(x − y)u(y)dy

=

∫
Ω

(−1)|α|∂α
y (jϵ(x − y))u(y)dy

=

∫
Ω

jϵ(x − y)∂αu(y)dy

= (∂αu)ϵ (x).

2.2.2 Properties of Weak Derivatives

Proposition 2.2.1. Suppose u ∈ L1
loc(Ω), and its first order weak derivatives exist and ∇u =

0 a.e.. Then u = Const. a.e. on Ω.

证明. By Lemma (2.2.4), ∇uϵ = (∇u)ϵ = 0. Thus uϵ ≡ Const.Cϵ in Ωϵ. By Lemma (2.2.3),
uϵ converges to u in L1

loc(Ω) as ϵ → 0. Since Ωϵ is growing as ϵ → 0, we observe that, when
restricted to a compactly embedded domain Ω′ and after passage to a subsequence, uϵ ≡ Cϵ

converges pointwise to u. This forces u to be a constant on Ω′, and by arbitrariness of Ω′, u
is constant all over the domain.

Theorem 2.2.1. Let u, v ∈ L1
loc(Ω), then v = weak ∂αu if and only if there is a sequence of

smooth functions uk such that

• uk −→ u in L1
loc(Ω) as k → ∞;

• Classical ∂αuk −→ v in L1
loc(Ω) as k → ∞.
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证明. “ ⇐= ”: For all test function ϕ, we have∫
Ω

vϕ = lim
k→∞

∫
Ω

∂αukϕ

= lim
k→∞

(−1)|α|
∫
Ω

uk∂
αϕ,

and then v = weak ∂αu.
“ =⇒ ”: For k ≥ 1, let Ωk = {x ∈ Ω; |x| < k, dist(x, ∂Ω) > 1/k}. Then for large k, Ωk is
nonempty and compactly embedded in Ω. Define

uk(x) =
(
u
∣∣
Ωk

)
1/k

(x)

=

∫
Ωk

j1/k(x − y)u(y)dy, x ∈ Ωk.

By Lemma (2.2.1), uk ∈ C∞(Rn). To show the convergence, one should observe that for a
fixed x ∈ Ω′ ⊂⊂ Ωk0

, k0 large, and k > k0, we have

uk(x) =
∫
Ωk

j1/k(x − y)u(y)dy

=

∫
Ωk∩B1/k(x)

j1/k(x − y)u(y)dy

=

∫
Ωk0

j1/k(x − y)u(y)dy

=
(
u
∣∣
Ωk0

)
1/k

(x).

According to Lemma (2.2.3),
(
u
∣∣
Ωk0

)
1/k

converges to u
∣∣
Ωk0

in L1(Ωk0
) and hence

uk
k→∞−→ u in L1(Ω′).

On the other hand, by Lemma (2.2.4), we have

∂αuk = ∂α
(
u
∣∣
Ωk0

)
1/k

(x)

=
(
∂αu

∣∣
Ωk0

)
1/k

(x)

=
(
v
∣∣
Ωk0

)
1/k

(x), x ∈ Ω′

k→∞−→ v, in L1(Ω′).

Remark: In “ ⇐= ”, we only need uk to be |α|-times differentiable.

Theorem 2.2.2. Chain Rule If f ∈ C1(R), f ′ ∈ L∞(R), and u ∈ L1
loc(Ω). Then,

• f(u) ∈ L1
loc(Ω);

• Weak ∇ (f(u(x))) exists and equals f ′(u(x)) · ∇u(x).
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证明. By previous theorem, there is a sequence uk such thatuk −→ u,

∇uk −→ ∇u,
/

in L1
loc(Ω). Now, consider f(uk(x)) ∈ C1(Ω), for any compactly embedded domain Ω′,∫

Ω′
|f(uk(x))− f(u(x))| dx =

∫
Ω′

|f ′(ξ)||uk(x)− u(x)|dx

≤ ∥f ′∥∞
∫
Ω′

∫
Ω′

|uk(x)− u(x)|dx

−→ 0,

as k → ∞. This imply that f(uk) converges to f(u) in L1
loc(Ω).

Now, we consider the following quantity∫
Ω′

∣∣∇f(uk(x)) − f
′
(u(x))∇u(x)

∣∣ dx =

∫
Ω′

∣∣∇f(uk(x)) − f
′
(uk(x))∇u(x) + f

′
(uk(x))∇u(x) − f

′
(u(x))∇u(x)

∣∣ dx

≤
∥∥f ′∥∥

∞

∫
Ω′

|∇uk − ∇u| +
∫
Ω′

|f ′
(uk(x)) − f

′
(u(x))||∇u(x)|dx

−→ 0,

as k → ∞. The first term converges because of / and the second converges after passage to
a subsequence according to LDCT.

Corollary 2.2.2. Suppose u = u+ + u− ∈W 1(Ω), then u+, u−, |u| ∈W 1(Ω), and

∇u+(x) =

∇u(x), u(x) > 0,

0, u(x) ≤ 0,

∇u−(x) =

∇u(x), u(x) < 0,

0, u(x) ≥ 0,

∇|u|(x) =


∇u(x), u(x) > 0,

0, u(x) = 0,

−∇u(x), u(x) < 0.

证明. For all ϵ > 0, let

fϵ(u) =


√
u2 + ϵ2 − ϵ, if u ≥ 0,

0, if u < 0.

Then we have

• f(u) = 0 if u < 0;

• f ′
ϵ(0+) =

u√
u2 + ϵ2

∣∣∣∣
u=0

= 0, and f ′
ϵ(0−) = 0, which implies that fϵ is in C1(R);

• fϵ(u) −→ u+ pointwise as ϵ→ 0;
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• 0 ≤ fϵ(u) ≤ u+.

By Chain Rule, for any ϵ > 0, we have fϵ(u(x)) ∈W 1(Ω) and

Weak ∇ (fϵ(u(x))) = f ′
ϵ(u(x))∇u(x) =

u+(x)√
u2(x) + ϵ2

∇u(x).

To find the weak derivative of u+, we observe that for arbitrary test function ϕ∫
Ω

fϵ(u(x))∇ϕ(x)dx = −
∫
Ω

u+(x)√
u2(x) + ϵ2

∇u(x)ϕ(x)dx.

Sending ϵ, along with the following facts

•

∣∣∣∣∣ u+(x)√
u2(x) + ϵ2

∇u(x)ϕ(x)
∣∣∣∣∣ ≤ |∇u(x)||ϕ(x)| ∈ L1(Ω);

• |fϵ(u(x))∇ϕ(x)| ≤ |∇ϕ(x)||u(x)| ∈ L1(Ω),

we finally reach the equation∫
Ω

u+(x)ϕ(x)dx = −
∫
Ω

χ{u(x)>0}(x)∇u(x)ϕ(x)dx.

The rest are obtained in the same way.

Corollary 2.2.3. Suppose u ∈W 1(Ω), and for some real number c we define

Ωc = {x ∈ Ω; u(x) = c}.

Then weak ∇u = 0 a.e. on Ωc.

证明.

∇u(x) = ∇(u(x)− c)

= ∇
[
(u(x)− c)+ + (u(x)− c)−

]
= 0 + 0 = 0.

2.3 Sobolev Spaces

Definition 2.8. Let k ≥ 0 be an integer, 1 ≤ p <∞, we define

W k,p(Ω) = {u ∈W k(Ω); ∂αu ∈ Lp(Ω), |α| ≤ k},

endowed with the following norm

∥u∥Wk,p(Ω) =

∫
Ω

k∑
|α|=0

|∂αu(x)|pdx

1/p

,

or equivalently,

|||u|||Wk,p(Ω) =
k∑

|α|=0

∥∂αu∥Lp(Ω) .
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Theorem 2.3.1. W k,p(Ω) is Banach.

证明. Just consider 1 ≤ p <∞ (p = ∞ easier). ∥·∥Wk,p(Ω) is a norm:

• ∥cu∥Wk,p(Ω) = |c| ∥u∥Wk,p(Ω);

•

∥u+ v∥Wk,p(Ω) =

∫
Ω

k∑
|α|=0

|∂αu(x) + ∂αv(x)|pdx

1/p

≤


∫
Ω


 k∑

|α|=0

|∂αu(x)|p
1/p

+

 k∑
|α|=0

|∂αv(x)|p
1/p


p

dx


1/p

≤

∫
Ω

k∑
|α|=0

|∂αu(x)|pdx +

∫
Ω

k∑
|α|=0

|∂αv(x)|pdx

1/p

≤ ∥u∥Wk,p(Ω) + ∥v∥Wk,p(Ω) ;

• If ∥u∥Wk,p(Ω) = 0, then ∥u∥Lp(Ω) = 0 and so u = 0.

How about completeness of ∥·∥Wk,p(Ω)? Suppose um is a Cauchy sequence in W k,p(Ω), then it
is Cauchy in Lp(Ω), and so are their partial derivatives ∂αum. Recall that Lp(Ω) is Banach,
we may find u∞ and vα to be the corresponding limits. We claim that vα = weak ∂αu∞ for
all |α| ≤ k. Let ϕ be a test function and write down the integral equation we see∫

Ω

∂αumϕ = (−1)|α|
∫
Ω

um∂
αϕ.

By Hölder inequality, LHS −→
∫
Ω
vαϕ and RHS −→ (−1)|α| ∫

Ω
u∞∂

αϕ as m → ∞. Now,
using |||·|||Wk,p(Ω), we see um −→ u∞ in W k,p(Ω) as m → ∞, which shows that W k,p(Ω) is
complete.

Theorem 2.3.2. For 1 < p <∞, W k,p(Ω) is separable and reflexive.

证明. Define mapping

T :W k,p(Ω) →
∏

|α|≤k

Lp(Ω)

u 7→ Tu = (∂αu)|α|≤k.

Then T is linear and isometric from W k,p(Ω) to its image, i.e. ∥Tu∥ = |||u|||. According to
basic facts in Functional Analysis, we are done.

2.3.1 Density Result

C∞(Ω) may not be seen as subspace of W k,p(Ω), but C∞(Ω) ∩ W k,p(Ω) is dense in
W k,p(Ω). To show this, we need partition of unity.
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Theorem 2.3.3. Partition of Unity Let {Ui}∞i=1 be bounded open subsets of Ω such that

• Ui ⊂ Ω, ∀i ≥ 1;

• Every compact K ⊂ Ω intersects only finitely many Ui’s;

• ∪∞
i=1Ui = Ω.

A partition of unity, subordinate to the open covering {Ui}∞i=1 is a sequence of C∞
0 (Ω) functions

ϕi such that

1. All ϕi ≥ 0;

2. Supp{ϕi} ⊂ Ui;

3.
∑∞

i=1 ϕi(x) = 1, ∀x ∈ Ω.

证明. Step 1: Construct a new open covering Vi of Ω such that Vi ⊂ Ui. Let F1 = U1\∪∞
i=2Ui,

then F1 is closed and bounded, and F1

∪
∪∞

i=2Ui = Ω. Since U1 ⊂ Ω, ∂U1 ⊂ Ω, and so ∂U1 ⊂
∪∞

i=2Ui. Thus F1 ⊂ U1. Take 0 < ϵ < dist(F1, ∂U1)/2, and let V1 = {x ∈ U1; dist(x, F1) < ϵ},
then V1 is open, and F1 ⊂ V1 ⊂⊂ U1. We also have V1

∪
∪∞

i=2Ui = Ω.
Now, let F2 = U2\ (V1

∪
∪∞

i=3Ui), we see F2 is compact, F2

∪
(V1

∪
∪∞

i=3Ui) = Ω, and
F2 ⊂ U2. As before, we obtain V2 and hence inductively Vi’s for each i ≥ 1.
Step 2: Construct ψi ∈ C∞

0 (Ui), ψi ≥ 0 and ψi > 0 on Vi for i ≥ 1. Let

ψi(x) = (χVi
)ϵ

=

∫
Ui

χVi
(y)jϵ(x − y)dy

=

∫
Vi

jϵ(x − y)dy,

and according to Lemma (2.2.1), ψi ∈ C∞
0 (Rn). Moreover, for all x ∈ Vi,

ψi(x) ≥
∫
Bϵ(x)∩Vi

χVi
(y)jϵ(x − y)dy

> 0,

and Supp{ϕi} ⊂ {x ∈ Ui; dist(x, Vi) < ϵ} ⊂⊂ Ui, if ϵ < dist(Vi, ∂Ui)/2.
Step 3: Let ψ(x) =

∑∞
i=1 ψi(x), then for all fixed x0 ∈ Ω, there is some i ≥ 1 such that

x ∈ Vi, and by Step 2, ψ(x0) ≥ ψi(x0) > 0. Take a small δ > 0 such that Bδ(x) ⊂ Ω, then
only finitely many Ui’s intersects Bδ(x), and recall that Supp{ψi} ⊂⊂ Ui, we see on the ball
ψ is only a finite sum of smooth functions, and so by arbitrariness of x, we know ψ is smooth
all over Ω. Finally, letting ϕ(x) := ψi(x)/ψ(x), we are done.

Remark: How to evaluate integrals on surfaces? Suppose Ω is bounded and there are bounded
open sets {(Ui, gi)}Ii=1 such that Ω̄ ⊂ ∪I

i=1Ui and gi’s are the coordinate function of ∂Ω ∩ Ui.
Then there exist ϕi ∈ C∞

0 (Ui) such that

37



• ϕi ≥ 0;

•
∑I

i=1 ϕi ≡ 1.

With this, we have for some proper function f on ∂Ω,∫
∂Ω

f(x)dS :=
I∑

i=1

∫
∂Ω

f(x)ϕi(x)dS

=
I∑

i=1

∫
Ui

(fϕi)(x1, · · · , xn−1, gi(x1, · · · , xn−1))dS

=
I∑

i=1

∫
Rn−1

(fϕi)(x′, gi(x′))
√

1 + |∇gi|2(x′)dx′.

Theorem 2.3.4. Density Theorem for Sobolev Space Let 1 ≤ p < ∞, k ≥ 1. Then
C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

证明. Want to show, for all u ∈W k,p(Ω), ϵ > 0, there is a v ∈ C∞
0 (Ω) ∩W k,p(Ω) such that

∥u− v∥Wk,p(Ω) < ϵ.

In this situation, mollifiers are not enough, because by Lemma (2.2.4), (∂αu)ϵ = ∂αuϵ only
on a subset Ωϵ ⊂⊂ Ω, and so ∂αuϵ may not converge to ∂αu.
Take large R > 0 such that BR(0) ∩ Ω ̸= ∅, and define for each j ≥ 1, Ωj = {x ∈ Ω; x ∈
BR+j(0), dist(x, ∂Ω) > 1/j}. Then Ωj ⊂⊂ Ωj+1, and Ωj ↑ Ω. Let Uj = Ωj+1\Ωj−1, j ≥ 0,
with Ω0 = Ω−1 = ∅. Then Ui’s satisfy the conditions in previous theorem, and there is a
partition of unity {ϕj}∞j=0 subordinate to {Uj}∞j=0. Because u ∈ W k,p(Ω), we have ϕju ∈
W k,p(Ω), and Supp{ϕju} ⊂⊂ Ωj+1\Ωj−1.
We will consider (ϕju)h. By Lemma (2.2.4), for small h > 0

∂α(ϕju)h(x) = (∂α(ϕju))h (x), ∀x ∈ Uj , |α| ≤ k,

because when h ≈ 0, its support must be compactly embedded in Uj , which also implies that
the above equality holds on the whole Rn. By Lemma (2.2.3), (∂α(ϕju))h

h→0−→ ∂α(ϕju) in
Lp(Ω), and then

(ϕju)h
h→0−→ ϕju, in W k,p(Ω).

For ϵ > 0, we take hj > 0 so small that∥∥(ϕju)hj
− ϕju

∥∥
Wk,p(Ω)

< ϵ/2j . 

We now set v(x) =
∑∞

j=0(ϕju)hj
(x), and because it’s locally a finite sum, we see v is well-

defined and definitely differentiable. By , we see v approximates u well in W k,p(Ω).

Remark: If ∂Ω is C1 and Ω bounded, then C∞(Ω̄) is dense in W k,p(Ω). (see Gilbarg
Trudinger Sobolev Spaces.)
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2.3.2 Sobolev Imbedding Theorem

It is not hard to find that C∞
0 (Ω) ⊂W k,p(Ω). We take the closure of C∞

0 (Ω) in W k,p(Ω),
and denote it by W k,p

0 (Ω).

Theorem 2.3.5. Sobolev Inequality

i. If 1 ≤ p < n, then

∥u∥
L

np
n−p (Ω)

≲n,p ∥∇u∥Lp(Ω) , ∀u ∈W k,p
0 (Ω);

ii. If p > n, then for u ∈ W k,p
0 (Ω), we have u ∈ C0(Ω̄) (there is ũ ∈ C0(Ω̄) such that

ũ = u a.e. in Ω), and
∥u∥C0(Ω̄) ≲n,p |Ω|

1
n− 1

p ∥∇u∥Lp(Ω) .

证明. Proof of i.: First assume u ∈ C1
0 (Ω), and extend u = 0 outside Ω, so that u ∈ C1

0 (Rn).
By FTC, we have

|u(x1, · · · , xn)| =
∣∣∣∣∫ xi

−∞

∂u

∂xi
(x1, · · · , xi, · · · , xi)dxi

∣∣∣∣
≤
∫ xi

−∞
|uxi

|dxi

≤
∫ ∞

−∞
|uxi

|dxi,

and then

|u|n ≤
n∏

i=1

∫ ∞

−∞
|uxi

|dxi

=⇒ |u| n
n−1 ≤

[
n∏

i=1

∫ ∞

−∞
|uxi

|dxi

] 1
n−1

=⇒
∫ ∞

−∞
|u(x1, · · · , xn)|

n
n−1 dx1 ≤

(∫ ∞

−∞
|ux1

(x1, · · · , xn)|dx1
) 1

n−1

·
∫ ∞

−∞

[
n∏

i=2

∫ ∞

−∞
|uxi

|dxi

] 1
n−1

dx1

≤
(∫ ∞

−∞
|ux1

|dx1
) 1

n−1

×
n∏

i=2

[∫ ∞

−∞

(∫ ∞

−∞
|uxi

|dxi
) 1

n−1 ·(n−1)

dx1

] 1
n−1

=⇒
∫ ∞

−∞

∫ ∞

−∞
|u(x1, · · · , xn)|

n
n−1 dx1dx2 ≤

[∫ ∞

−∞

(∫ ∞

−∞
|ux2

|dx2
)
dx1

] 1
n−1

×
[∫ ∞

−∞

(∫ ∞

−∞
|ux1

|dx1
)
dx2

] 1
n−1

×
n∏

i=3

[∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
|uxi

|dxi
)
dx1dx2

] 1
n−1

,

which, after induction, gives that∫
Rn

|u| n
n−1 (x)dx ≤

n∏
i=1

(∫
Rn

|uxi
|(x)dx

) 1
n−1
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Taking the n
n−1

-th root of both sides, wo get

LHS
n−1
n ≤

∏
(· · · ) 1

n

≤ 1

n

n∑
i=1

(· · · )

≤ 1√
n

∫
Rn

|∇u|(x)dx.

Thus, we obtain

∥u∥
L

n
n−1 (Rn)

≤ 1√
n
∥∇u∥L1(R) , u ∈ C1

0 (Ω), 

which is the desired inequality when p = 1. Now, in , we replace u by |u|r (r > 1 to be
determined). We then have

∥|u|r∥
L

n
n−1 (Ω)

≤ 1√
n

∥∥r|u|r−1∇u · sign(u)
∥∥
L1(Ω)

≤ r√
n
∥∇u∥Lp

∥∥|u|r−1
∥∥
Lp′ (Ω)

.

Take r such that
rn′ :=

rn

n− 1
= (r − 1)p′,

and we find that r = p′

p′−n′ > 1 and rn
n−1

= p′n′

p′−n′ =
pn
n−p

, and according to , we have(∫
Ω

|u|
pn

n−p (x)dx
)n−p

p

≤ r√
n
∥∇u∥Lp(Ω)

(∫
Ω

|u|
pn

n−p (x)dx
) 1

p′

,

and hence
∥u∥

L
np

n−p (Ω)
≲n,r ∥∇u∥Lp(Ω) , ∀u ∈ C1

0 (Ω). 

For general u ∈ W 1,p
0 (Ω), by definition of it, there is a sequence uk ∈ C∞

0 (Ω) such that
uk −→ u in W 1,p(Ω). Applying  to uk we have

∥uk∥
L

np
n−p (Ω)

≲n,r ∥∇uk∥Lp(Ω) ,

and by the convergence uk −→ u in Lp(Ω), we may find a subsequence such that uk −→ u

pointwise. A simple application of Fatou’s Lemma finishes the proof:

∥u∥
L

np
n−p

(Ω) ≤ lim inf
k→∞

∥uk∥
L

np
n−p (Ω)

≲n,r lim
k→∞

∥∇uk∥Lp(Ω) = ∥∇u∥Lp(Ω) .

Proof of ii.: Given u ∈ C1
0 (Ω), let ũ =

√
nu

∥∇u∥Lp(Ω)
, and assume |Ω| = 1. Recall from proof of

i., we have
∥|u|r∥

L
n

n−1 (Ω)
≤ r√

n
∥∇u∥Lp

∥∥|u|r−1
∥∥
Lp′ (Ω)

,

and thus

∥|ũ|r∥n′ ≤
r√
n

∥∥|u|r−1
∥∥
Lp′ (Ω)

∥∇ũ∥Lp(Ω)

=
r√
n

∥∥|u|r−1
∥∥
Lp′ (Ω)

√
n

∥∇u∥Lp

∥∇u∥Lp

= r
∥∥|u|r−1

∥∥
Lp′ (Ω)

,
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or equivalently,
∥ũ∥rrn′ ≤ r ∥ũ∥r−1

p′(r−1) ,

and hence

∥ũ∥rn′ ≤ r1/r ∥ũ∥1−1/r
p′(r−1)

≤ r1/r ∥ũ∥1−1/r
p′r ,

where we used the assumption |Ω| = 1. Now, we take r = δm, m = 1, 2, . . . with δ = n′

p′ > 1.
We then have

∥ũ∥n′δm ≤ (δm)δ
−m

∥ũ∥1−δ−m

δm−1n′

≤ (δm)δ
−m
[
(δm−1)δ

−(m−1)

∥ũ∥1−δ−(m−1)

δm−2n′

]1−δ−m

, (Reversed Hölder)

≤ δmδ−m+(m−1)δ−(m−1)

∥ũ∥(1−δ−m)(1−δ−(m−1))

n′δm−2

≤ δmδ−m+···+δ−1

∥ũ∥(1−δ−m)(1−δ−(m−1))···(1−δ−1)
n′

= δ
∑m

k=1 kδ−k

∥∥∥∥∥
√
nu

∥∇u∥p

∥∥∥∥∥
∏m

k=1(1−δ−k)

n′

.

Recall that ∥u∥n′ ≤ 1√
n
∥∇u∥1 ≤

1√
n
∥∇u∥p, we have

∥ũ∥n′δm ≤ δ
∑∞

k=1 kδ−k

= χ <∞.

Sending m→ ∞ we have
∥ũ∥∞ ≤ χ,

and
∥u∥∞ ≤ χ√

n
∥∇u∥Lp(Ω) , ∀u ∈ C1

0 (Ω), 

The general case that u ∈W k,p
0 (Ω) is obtained through density arguments.

What if |Ω| ̸= 1? Let v(y) = u(|Ω|1/ny), and apply  to it, we see

∥u∥C0(Ω̄) = ∥v∥C0(Ω̄/|Ω|1/n) ≲ ∥∇v∥Lp(Ω/|Ω|1/n) = ∥∇v∥Lp(Ω) |Ω|
1
n− 1

p .

Theorem 2.3.6. Sobolev Imbedding Theorem Suppose 1 ≤ p <∞, then

W k,p
0 (Ω) ↪→


L

np
n−p (Ω), if 1 ≤ p < n,

Lq(Ω), ∀1 ≤ q <∞, if p = n&Ω bounded,

C0(Ω̄), if p > n&Ω bounded.

证明. When p ̸= n, the conclusion follows from Sobolev inequalities. The case p = n is
obtained by Hölder Inequality.

Remark:
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1. When n < p <∞, and Ω bounded, we have

W 1,p
0 (Ω) ↪→ Cα(Ω̄),

where α = 1− n/p, (see HW4);

2. When p = n, the best estimate is the bound for the BMO-norm, (see Partial Differential
Equations by Evans);

3. ii. implies that 1 ̸∈W k,p
0 (Ω).

Corollary 2.3.1. Poincaré Inequality Suppose Ω bounded and 1 ≤ p < ∞, then for all
u ∈W 1,p

0 (Ω)

∥u∥Lp(Ω) ≲n,p,Ω ∥∇u∥Lp(Ω) .

证明. We argue case by case:

Case 1. 1 ≤ p < n, we have

∥u∥Lp(Ω)

Hölder
≲ p,n,Ω ∥u∥

L
np

n−p (Ω)

≲p,n,Ω ∥∇u∥Lp(Ω) ;

Case 2. p = n similar proof;

Case 3. p > n, we have

∥u∥Lp(Ω) ≤ ∥u∥L∞(Ω) |Ω|
1/p

≲p,n |Ω|1/n ∥∇u∥Lp(Ω) .

Corollary 2.3.2. Let u ∈ W 1,p
0 (Ω), with Ω bounded, we may define an equivalent norm

∥∇u∥Lp(Ω) on this space, provided 1 ≤ p <∞.

2.3.3 Relich-Kondrakov Compact Imbedding Theorem

Terminology: Let (X, ∥·∥) and (Y, |||·|||) be Banach, then we say X is compactly imbedded
into Y if there is an injective bounded linear map i : X → Y that is compact in the sense
that bounded sequence in X has convergent subsequence in Y .

Theorem 2.3.7. Suppose Ω is bounded and 1 ≤ p < n. Then

W 1,p
0 (Ω) ↪↪→ Lq(Ω), ∀1 ≤ q <

np

n− p
.

Remark:

1. If p = n and Ω bounded, then the above compact imbedding holds for all q ≥ 1;
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2. If p > n and Ω bounded, recall that

W 1,p
0 (Ω) ↪→ Cα(Ω̄), α = 1− n

p
,

where

Cα(Ω̄) = {f ∈ C0(Ω̄); there is a constant C > 0, |f(x)−f(y)| ≤ C|x−y|α, ∀x,y ∈ Ω̄.}

We also claim that
Cα(Ω̄) ↪↪→ Cβ(Ω̄), 0 < β < α.

(see HW4.)

证明. Special Case q = 1: We wish to show any bounded set A ⊂ W 1,p
0 (Ω) (suppose the

bound is M > 0) is precompact in L1(Ω), (that is, its closure is compact.) We first claim that
by extending u ∈ W 1,p

0 (Ω) to be 0 outside Ω, we obtain u ∈ W 1,p
0 (Rn), which can be easily

shown using Theorem (2.2.1). Now, we extend all functions in A to be in W 1,p
0 (Rn).

For ϵ > 0, define
Aϵ = {uϵ; u ∈ A},

where uϵ(x) =
∫
Rn u(y)jϵ(x − y)dy. We claim that for any fixed ϵ > 0, Aϵ is precompact in

L1(Ω). To this end, we observe that

|uϵ(x)| ≤
∫
Rn

|u(y)|jϵ(x − y)dy

≤
∥j∥∞
ϵn

∥u∥1

≲ϵ,n M,

and

|∇uϵ(x)| = |(∇u)ϵ(x)|

=

∣∣∣∣∫
Rn

∇u(y)jϵ(x − y)dy
∣∣∣∣

≤
∥j∥∞
ϵn

∥∇u∥1

≲ϵ,n M.

Thus, {uϵ}u∈A is uniformly bounded on Ω̄ and equi-continuous. By Arzela-Ascoli Theorem,
Aϵ is precompact in C0(Ω̄) ↪→ L1(Ω), which implies the Claim.

If u is further smooth and compactly supported, we have

|uϵ(x)− u(x)| =
∣∣∣∣∫

Rn

jϵ(x − y) (u(y)− u(x)) dy
∣∣∣∣

=

∣∣∣∣∫
Rn

j(z) (u(x − ϵz)− u(x)) dz
∣∣∣∣

=

∣∣∣∣∫
Rn

j(z)
(∫ ϵ

0

d

ds
u(x − sz)ds

)
dz
∣∣∣∣

≤
∫
Rn

j(z)
(∫ ϵ

0

|∇u(x − sz)|ds
)
|z|dz.
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Thus ∫
Rn

|uϵ(x)− u(x)|dx ≤ ∥∇u∥L1(Rn) ϵ. 

What if u ̸∈ C∞
0 (Rn)? In this case, we take a sequence of uk ∈ C∞

0 (Ω) that converges to u in
W 1,p

0 (Ω) and hence in W 1,p
0 (Rn). Applying  to uk, we have

∥(uk)ϵ(x)− uk(x)∥L1(Rn) ≤ ∥∇uk∥L1(Rn) ϵ,

and letting k → ∞, we see  still holds true for u.
Now, according to , we have

∥uϵ(x)− u(x)∥L1(Ω) ≤ ϵC(p, n,Ω)M, ∀u ∈ A.

Since Aϵ is precompact in L1(Ω), for all δ > 0, we can cover Aϵ by finitely many balls of
radius δ/2 in L1(Ω). We now choose ϵ = δ/(2CM), then ∥u− uϵ∥1 ≤ δ/2, and so A is covered
by finitely many balls of radius δ, which implies that A is precompact in L1(Ω).
General Case 1 < q < np

n−p
=: p∗: In this case, there should be a constant λ ∈ (0, 1) such

that
λ+ (1− λ)/p∗ = 1/q

Recall that if λ ∈ (0, 1), p1, p2, q ≥ 1 and

λ

p1
+

1− λ

p2
=

1

q
,

then
∥f∥Lq ≤ ∥f∥λLp1 ∥f∥

1−λ
Lp2 .

Applying this to u ∈ A, we have

∥u∥Lq(Ω) ≤ ∥u∥λL1(Ω) ∥u∥
1−λ
Lp∗ (Ω) .

By Sobolev inequality, we have
∥u∥Lp∗ (Ω) ≲p,n M,

and hence
∥u∥Lq(Ω) ≲p,n,λ M

1−λ ∥u∥λL1(Ω) .

With the same proof, we have for u, v ∈ A,

∥u− v∥Lq(Ω) ≲p,n,λ M
1−λ ∥u− v∥λL1(Ω) ,

which implies that A is precompact in Lq(Ω).
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Chapter 3

L2 Theory for Second Order
Elliptic Equations

Through this chapter, we assume Ω ⊂⊂ Rn, and the operator in divergence form:

Lu = − (aij(x)uxi
)xj

+ bi(x)uxi
+ c(x)u, x ∈ Ω,

where aij , bi, c ∈ L∞(Ω). We say that L is strictly elliptic on Ω if (aij(x))n×n is symmetric
a.e. on Ω, and there is a positive constant λ0 such that (aij(x))n×n ≼ λ0In×n a.e. on Ω.

3.1 Lax-Milgram Theorem

Our main goal is to show the existence and uniqueness of

(DBV P )

Lu(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

Before that we introduce a new notation:

Hk
0 (Ω) =W k,2

0 (Ω),

endowed with inner product:

(u, v)Hk
0 (Ω) =

∫
Ω

k∑
|α|=0

∂αu(x)∂αv(x)dx.

Notions of Weak Solution to (DBVP):

1. We require the weak solution to be in H1
0 (Ω), where the “0” take care of the Dirichlet

Boundary Condition;
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2. The equation cannot be considered as one for measurable functions, because if we assume
on a plane that aij(x) = k(x)δij , c, bi = 0, with

k(x) =

1, on upper half plane,

0.1, on lower half plane,

and f = 0, we find
−∇k · ∇u = k∆u,

where, according to later discussions, RHS is an L2 function, while on LHS, ∇k looks
like a δ-function, which forces us to discuss the equation in a more intricate way. In
effect, the operator should be understood as distributions:

Lu = f in Ω ⇐⇒ ∀ϕ ∈ D(Ω), < Lu, ϕ >=< f, ϕ >,

where < Lu, ϕ >=
∫
Ω
aijuiϕj + biϕ+ cuϕ =: L(u, ϕ);

3. For general distribution f , the problem (DBVP) is too hard, so we focus on the case
f ∈ (H1

0 (Ω))
∗
=: H−1(Ω).

Now, we see a reasonable way to define weak solution to (DBVP) should be the following.

Definition 3.1. Suppose f ∈ H−1(Ω), we will say u ∈ H1
0 (Ω) is a weak solution to (DBVP)

if for all v ∈ H1
0 (Ω), we have

L(u, v) =< f, v >H−1,H1
0
.

Remark:

• A weak solution must be a distributional solution;

• What are the ingredients of H−1(Ω)? Well, if f ∈ L2(Ω), then f naturally induces
a bounded linear functional on H1

0 (Ω). What are the others? According to Riesz’s
Representation Theorem, any Hilbert space is equivalent to its dual, and so to any
bounded linear functional g on H1

0 (Ω) there corresponds a unique element p ∈ H1
0 (Ω)

such that < g, v >H−1,H1
0
= (p, v)H1

0
for all v ∈ H1

0 (Ω). By definition of RHS, we have a
realization of g, the sum of an L2 function and the distributional derivative of another
L2 function.

Motivational Example: We consider

(DBV P )

−∆u = f ∈ H−1, in Ω,

u = 0, on ∂Ω.

Then, (DBVP) has one and only one solution. Recall that W 1,p
0 (Ω) has an equivalent norm

∥∇·∥Lp(Ω), and since here p = 2, we may apply parallelogram principle and define a new inner
product on H1

0 (Ω) as follows:

((u, v))H1
0
=

∫
Ω

∇u(x) · ∇v(x)dx.
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Now, a simple application of Riesz’s Representation Theorem will give us the result. To tackle
the general (DBVP) however, we require a generalization of RRT.

Theorem 3.1.1. Lax-Milgram Theorem Let H be Hilbert, and a(u, v) a bilinear form on
H satisfying

• There is some N > 0 such that

|a(u, v)| ≤ N ∥u∥ ∥v∥ , u, v ∈ H;

• There is γ > 0 such that
a(u, u) ≥ γ ∥u∥2 .

Then, for any f ∈ H∗, there corresponds a unique u ∈ H that realizes f in the sense that

a(u, v) =< f, v >H∗,H , ∀v ∈ H.

Moreover, we have the bound
∥u∥ ≤ 1

γ
∥f∥ .

证明. Observe that for a fixed u ∈ H, the mapping v 7→ a(u, v) is linear and bounded, and
thus according to RRT, there is a unique Au ∈ H such that

(Au, v) = a(u, v), ∀v ∈ H.

Claim 1. Au induces an injective linear and bounded map from H to itself. Linearity
is clear to find, and we focus on boundedness. To see this, we observe that |(Au, v)| =

|a(u, v)| ≤ M ∥u∥ ∥v∥. After dividing both sides by ∥v∥, we obtain the boundedness. Since
a(u, u) ≥ γ ∥u∥2, we have ∥Au∥ ∥u∥ ≥ (Au, u) ≥ γ ∥u∥2 , and thus Au is injective.

Also by RRT, we have < f, v >= (f̃ , v), with ∥f∥H∗ =
∥∥∥f̃∥∥∥

H
, and so we only need to

solve Au = Au = f̃ . It suffices to show A is onto.
Claim 2. R(A) is closed. This can be obtain through Cauchy-sequence arguments with the
aid of .
Claim 3. R(A) = H. If not, then there is a 0 ̸= g ∈ H such that g ⊥ R(A), and hence
Ag ⊥ g. However, 0 = (Ag, g) = a(g, g) ≥ γ ∥g∥2.

Now, also because of , we have ∥A−1∥ ≤ 1
γ
, and then we obtain the bound for u.

Now, we return to the general problem

(DBV P )

Lu = f ∈ H−1(Ω), in Ω,

u(x) = 0, on ∂Ω.

Before discussing it, we look at the following baby example−u′′ − u = sin(x), x ∈ (0, π),

u(0) = 0 = u(π),
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which has no solution. To see this, we multiply both sides by sin(x) and integrate over (0, π),
and obtain ∫ π

0

−u′′ sin(x)− u sin(x)dx =

∫ π

0

sin2(x)dx.

Do integration by parts on LHS, we have

LHS = u(sin(x))′
∣∣∣∣x=π

x=0

−
∫ π

0

u(sin(x))′′ + u sin(x)dx = 0,

which is impossible. On the other hand, the following initial value problem must have solutions
u′′ = f(x, u, u′),

u(0) = u0,

u′(0) = u1.

From the above discussions, one should keep in mind that (DBVP) may not always have
solutions and therefore, we need to consider the problem in a more thorough way.

Theorem 3.1.2. There is a constant σ0 > 0 such that if σ ≥ σ0, then for all f ∈ H−1(Ω),
the following revised problem

(DBV P )

Lσu = f, in Ω,

u = 0, on ∂Ω,

has one and only one weak solution, where Lσu = Lu+ σu.

证明. We consider the bilinear form associated to Lσ:

Lσ(u, v) =

∫
Ω

[aijuivj + biuiv + (c+ σ)uv] dx, u, v ∈ H1
0 (Ω).

Check:

• Boundedness of Lσ:

|Lσ(u, v)| ≤ ∥|aij |∥∞ ∥∇u∥2 ∥∇v∥2 +
∥∥∥⃗b∥∥∥

∞
∥∇u∥2 ∥v∥2 + (∥c∥∞ + σ) ∥u∥2 ∥v∥2

≤M ∥u∥H1
0
∥v∥H1

0
;

• Coercivity of Lσ:

Lσ(u, u) ≥ λ0

∫
Ω

|∇u|2dx −
∥∥∥⃗b∥∥∥

∞
∥∇u∥2 ∥u∥2 − ∥c∥∞ ∥u∥22 + σ ∥u∥22

≥ λ0

∫
Ω

|∇u|2dx − ϵ ∥∇u∥22 −
1

4ϵ

∥∥∥⃗b∥∥∥2
∞
∥u∥22 + (c− ∥c∥∞) ∥u∥22

ϵ=
λ0
2=
λ0

2

∫
Ω

|∇u|2dx +

(
σ − ∥c∥∞ − 1

2λ0

∥∥∥⃗b∥∥∥2
∞

)
∥u∥22 ,

and so we only have to take σ0 = ∥c∥∞ + 1
2λ0

∥∥∥⃗b∥∥∥2
∞

, and norm induced by ((·, ·))H1
0
.

Now, applying Lax-Milgram theorem, we are done.
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3.2 Fredholm Operator Theory

In order to handle the harder problem

(DBV P )

Lu = f, on Ω,

u = 0, on ∂Ω.

We need Fredholm Operator Theory.

Definition 3.2. Let X and Y be Banach, T : X → Y linear and bounded. We say that T is
Fredholm if

• dimKer(T ) <∞;

• Im(T ) is closed;

• codimIm(T ) <∞.

For such operators, we define ind(T ) = dimKer(T ) − Codim Im(T ), the Fredholm index
of T .

Theorem 3.2.1. Riesz-Fredholm Compact Perturbation Theorem If T is Fredholm
and

K : X → Y,

is compact. Then T +K is Fredholm and

ind(T +K) = ind(T ).

This theorem has been proved in the course Functional Analysis (Graduate), and here
we only talk about how to use it. Recall that given u ∈ H1

0 , L(u, ·) induces a bounded linear
functional on H1

0 , and because L is a bounded bilinear form, we know L induces a bounded
linear mapping from H1

0 to its dual. Now, it is convenient to observe that to ask whether
(DBVP) is solvable is equivalent to ask whether Im(L) = H−1, and whether the solution is
unique Ker(L) = 0.

Theorem 3.2.2. The operator L : H1
0 → H−1 is Fredholm with index 0.

证明. According to RFCPT and previous result for Lσ, it suffices to show that the inclusion
I : H1

0 → H−1 is compact. Observe that I : H1
0 ↪↪→ L2 ↪→ H−1 is the composite of two

canonical embeddings, where the first is compact embedding due to RKCIT, and thus we are
done.

Corollary 3.2.1. Fredholm Alternative (DBVP) has a unique solution if and only if it is
solvable for every f ∈ H−1.
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Question: What if uniqueness of L fails?
Let u, v be smooth and compactly supported, then∫

Ω

Luv =

∫
Ω

[aijuivj + biuiv + cuv]

=

∫
Ω

− (aijvi)j u− (biv)iu+ cvu

=:

∫
Ω

L∗vu.

Here, we call L∗ the formal adjoint of L, and L∗v is considered as an element in H−1.

Theorem 3.2.3. Existence and Uniqueness Theorem for (DBVP)

1. Fredholm Alternatives: (DBVP) has a unique solution if and only if it has a solution for
all f ∈ H−1. (Already proved);

2. The subspace of H1
0 consisting of weak solutions of (DBVP) when f = 0 is of finite

dimension, with dimension equal that of solution space ofL∗v = 0, in Ω,

v = 0, on ∂Ω.

Or we may write dimKer(L) = dimKer(L∗);

3. For general f , (DBVP) has a weak solution if and only if < f, v >= 0 for all v ∈
Ker(L∗). Or we may write Im(L) = ⊥Ker(L∗).

证明. Recall that we have shown L : H1
0 → H−1 is Fredholm with ind(L) = 0. Similarly, one

can show that L∗ is also Fredholm with index 0. Now, we write

H1
0 = Ker(L)

⊕
X1,

H−1 = Im(L)
⊕

Y1,

with X1, Y1 closed. Let Ker(L∗) = span{e1, · · · , ek} ⊂ H1
0 , k = dimKer(L∗). By Hahn-

Banach, there are linearly independent f1, · · · , fk ∈ H−1 such that < fi, ej >= δij ,.
Claim 1. span{f1, · · · , fk} ∩ Im(L) = 0. If not, there should be u ∈ H1

0 such that Lu ̸= 0

and Lu = c1f1 + · · ·+ ckfk. Applying Lu to ej , we have

ci =< Lu, ei >=< L∗ei, u >= 0.

Claim 2. dimKer(L∗) ≤ dimKer(L). Because fi ∈ H−1 = Im(L)
⊕
Y1, then there should

be ui ∈ H1
0 and yi ∈ Y1 such that fi = Lui + yi. We claim that yi’s are linearly independent.

If not, there are d1, · · · , dk, not all 0, and
∑

i diyi = 0, and hence∑
i

difi =
∑
i

diLui,
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where LHS ∈ span{f1, · · · , fk}, while RHS ∈ Im(L). By claim 1, LHS = 0, which contra-
dicts that fi’s are linearly independent. Thus k ≤ dimY1 = dimKer(L). Similarly, one can
show the reverse.
Now, to show Im(L) = ⊥Ker(L∗), we first observe that Im(L) ⊂ ⊥Ker(L∗). Given u ∈ H1

0 ,
and for every v ∈ Ker(L∗), we have < Lu, v >=< L∗v, u >= 0. To show the reverse, we take
f ∈ ⊥Ker(L∗). From Claim 1 and 2, we know H−1 = ℑ(L)

⊕
span{f1, · · · , fk}. This implies

that there is r ∈ Im(L), c1, · · · , ck constants, such that

f = r + c1f1 + · · ·+ ckfk = Lu+ · · · ,

for some u ∈ H1
0 . Applying f to ei, we have ci =< f, ei > − < Lu, ei >= 0, and hence

f = r ∈ Im(L).

Example: Consider on Ω = (0, π), Lu = −u′′ − u,

(BV P )

Lu = f, in Ω,

u = 0, on ∂Ω.

For what f ∈ H−1 does (BVP) have a weak solution? Answer: f ⊥ sin(x).

Theorem 3.2.4. A user-friendly theorem Suppose Ω bounded, u ∈ H1(Ω) ∩ C0(Ω̄) and
u = 0 on the boundary. Then u ∈ H1

0 (Ω).

证明. Just need to show u+ ∈ H1
0 (Ω). By HW4, (u+ − ϵ)+ ∈ H1

0 (Ω). On the other hand
(u+ − ϵ)+ converges to u+ in H1(Ω).

3.3 An Introduction to Homogenization

Suppose the thermal conductivity of a rod is given by a(x/ϵ), where a(y) is a periodic
measurable bounded function withe period y0 > 0. We also assume that λ0 ≤ a(y) ≤ 1/λ0,
for some λ0 > 0. Suppose f is an L2 function, and the temperature u of the rod is given byut = (a(x/ϵ)ux)x + f(x), x ∈ (0, b),

u = 0, in {0, b}.

Its steady state is then given by− (a(x/ϵ)ux)x = f(x), x ∈ (0, b),

u = 0, in {0, b}.

When f , we multiply both sides by u, and after using integration by parts, we know that the
above equation has at most one solution. According to Fredholm Alternative, this equation
has solution for every f ∈ H−1. We denote this solution by uϵ, and wish to study limϵ→0 uϵ.
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Boundedness of uϵ in H1
0 (Ω):∫ b

0

a(x/ϵ)u2xdx =

∫ b

0

f(x)u(x)dx,

and by ellipticity of a and Poincaré inequality, we obtain the following A priori estimate

∥ux∥2 ≤ ∥f∥2C/λ0.

Accrording to Banach-Eberlein Theorem, and H1
0 ↪↪→ L2, we know after passage to a subse-

quence, there is an u0 ∈ H1
0 such that uϵ → u0 weakly in H1

0 and strongly in L2.
Now, let vϵ(x) = a(x/ϵ)u′ϵ(x), we claim that after passage to a subsequence, vϵ → v0

weakly in H1 and strongly in L2, which can be proved also by the A priori estimate . But
why vϵ ∈ H1? According to the equation, we know its weak derivative is exactly f ∈ L2.
Claim (Generalized Riemann-Lebesgue) For all h ∈ L∞(R), periodic with period y0 > 0, we
have

h
(x
ϵ

)
∗
⇀< h >:=

∫ y0

0
h(y)dy

y0
.

To prove this claim, we first study the simplest case: g(x) = χI , with I = (c, d) some interval
in (o, b). Then applying h on g, we have∫ d

c

h(x/ϵ)dx = N

∫ c+ϵy0

c

h(x/ϵ)dx+O(ϵ)

= ϵN

∫ y0+c/ϵ

c/ϵ

h(z)dz +O(ϵ)

= ϵN

∫ y0

0

h(z)dz +O(ϵ),

with N ≥ 1 such that c+Nϵy0 ≤ d < c+ (N + 1)ϵy0. We further have

LHS = Nϵy0

∫ y0

0
h(y)dy

y0
+O(ϵ)

= (d− c) < h > +O(ϵ).

Thus, the case for χI is done, and so are step functions. For general g ∈ L1(0, b), we already
know step functions are dense in it, that is, for all δ > 0, there is a step function s such that
∥g − s∥1 < δ. Now, we have∣∣∣∣∣

∫ b

0

g(x)h(x/ϵ)dx− < h >

∫ b

0

g(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

0

s(x)h(x/ϵ)dx− < h >

∫ b

0

s(x)dx

∣∣∣∣∣
+ (∥h∥∞ + | < h > |) ∥g − s∥1 .

Thus, we have proved the claim.
To see the convergence of vϵ, we observe that u′ϵ = vϵ/a(x/ϵ). Recall that LHS = u′ϵ is

weakly convergent in L2 to u′0, and so is RHS. According to the above claim and the fact
that vϵ → v0 strongly in L2, we have RHS → v0 <

1
a
> weakly in L2, and hence

v0(x) =
1

< 1
a
>
u′0(x).
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Recall in the weak sense, we have −v′0 = f , and hence u0 must satisfy the equation− 1
< 1

a>
u′′0(x) = f(x), x ∈ (0, b),

u0(0) = 0 = u0(b).

3.4 Eigenvalue Problem

Baby Example: Recall in ODE, the equation

dX⃗

dt
= An×nX⃗,

admits exactly one solution provided the initial value. A trial solution is a solution of the
form X⃗ = eλtC⃗. Inserting this formula into the equation, we obtain an algebraic equation

AC⃗ = λC⃗.

Recall if A is symmetric, then

inf
x̸=0,x∈Rn

(Ax,x)
|x|2 =: λ1,

will be the first eigenvalue of A. Reducing the space that we are taking infimum, we obtain
a sequence of numbers λ1, · · · , λn, each corresponds a minimizer x1, · · · ,xn.

We wish to apply this idea to

(EP )

−(aij(x)ui)j + c(x)u = λu, x ∈ Ω ⊂⊂ Rn,

u = 0, x ∈ ∂Ω.

We always assume aij , c bounded, and aij strictly elliptic with ellipticity coefficient λ0.

Definition 3.3. A weak solution of (EP) is u ∈ H1
0 (Ω) such that

L(u, v) =:
∫
Ω

aijuivj + cuvdx = λ

∫
Ω

uvdx, ∀v ∈ H1
0 (Ω).

Let
λ1 = inf

u̸=0,u∈H1
0 (Ω)

L(u, u)
∥u∥22

,

and for u ∈ H1
0 (Ω)

R(u) :=
L(u, u)
∥u∥22

.

Lemma 3.4.1. λ1 is an eigenvalue of (EP).

证明. It can be shown, for any u
R(u) ≥ −∥c∥∞ ,

and hence λ1 > −∞. Taking minimizing sequence and applying Banach-Eberlein Theorem, we
may find a minimizer v ∈ H1

0 (Ω). v is a minimizer ofR(·), and so if we define fw(t) = R(v+tw),
for t ≈ 0, and w ∈ H1

0 (Ω), we have f ′
w(0) = 0, and thus direct computation tells us that v is

exactly a weak solution.
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Remark:

• All eigenvalues of (EP) must be real;

• λ1 is the smallest one.

Lemma 3.4.2. Any eigenfunction that corresponds to λ1 cannot change sign. λ1 corresponds
to only one eigenfunction.

证明. If u minimizes R(·), then so is |u|. Thus |u| is still an eigenfunction. Apply De Giorgi-
Nash Theorem, we have u ∈ Cα

loc(Ω), for some α ∈ (0, 1). If u changes sign, then |u| must
be 0 somewhere in the domain. Now, using Harnack’s inequality, we know it’s impossible.
(If u ≥ 0 on Ω, then there is C = C(Ω′,Ω, aij , bi, c) > 0 such that supΩ′ u ≤ C infΩ′ u for all
Ω′ ⊂⊂ Ω.)

Suppose there are two eigenfunctions u1 ̸= u2 that correspond to λ1, we consider g(c) =
(u1 + cu2, u2)L2 , and find that when c0 = −(u1, u2)L2/(u2, u2)L2), g(c0) = 0, and hence
u1 + c0u2 must change sign, which is impossible.

Lemma 3.4.3. Let
λ2 = inf

u ̸=0,u∈H1
0 ,u⊥u1

R(u),

then λ2 > λ1 is also an eigenvalue.

证明. As before, we may obtain u2 as the eigenfunction corresponding λ2. It can be shown
that u2 ⊥ u1 both in L2 and H1

0 .

For k ≥ 1, define
λk+1 = inf

u∈H1
0 ,u ̸=0,u⊥L2u1,··· ,uk

R(u),

and one can similarly prove (λk, uk)’s are all the eigenpairs.

Lemma 3.4.4. λk → ∞, as k → ∞.

证明. It is easy to obtain

λ0

∫
Ω

|∇uk|2 ≤ (∥c∥∞ + λk)

∫
Ω

u2k.

Normalize
∫
Ω
u2k = 1, we see if there is a bounded subsequence λkj

≤ M , we see ukj
’s must

have weakly convergent subsequence in H1
0 (strong convergence in L2). But uk’s are mutually

orthogonal, which makes the convergence impossible.

Induce a new inner product on H1
0 (Ω):

((u, v))∗ = L(u, v) + ∥c∥∞ (u, v).

It can be shown that ((u, v))∗ is equivalent to the previous one, and we denote the induced
norm ∥·∥∗.
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Lemma 3.4.5. Let ck be constants such that ∥ckuk∥∗ = 1, then ckuk’s form an orthonormal
basis for H1

0 (Ω).

证明. If there is u ∈ H1
0 (Ω) such that

0 = ((u, uk))
∗ = (λk + ∥c∥∞)(u, uk)L2 .

Because λk + ∥c∥∞ > 0, we know
(u, uk)L2 = 0,

and by definition of λk’s, R(u) ≥ λk for k ≥ 1, which is impossible by Lemma (3.4.4).

Lemma 3.4.6. uk’s form an orthonormal basis for L2(Ω).

证明. If u ∈ H1
0 (Ω), then we are done by the above lemma. (Need to use ((u, uk))

∗ =

(λk + ∥c∥∞)(u, uk)L2 .) Suppose otherwise, we recall C∞
0 (Ω) is dense in L2(Ω), we set vm such

a sequence. Then, by prior discussion, we may write

vm =
∞∑
k=1

(vm, uk)uk.

Also, it can be shown
∑∞

k=1(u, uk)
2 ≤ ∥u∥22, thus

∑∞
k=1(uk, u)uk is well-defined. We then have∥∥∥∥∥u−

∞∑
k=1

(uk, u)uk

∥∥∥∥∥
2

≤

∥∥∥∥∥u−
∞∑
k=1

(uk, vm)uk

∥∥∥∥∥
2

≤ ∥u− vm∥2
−→ 0,

as m→ ∞.

Lemma 3.4.7. Let (λ, e) be an eigen pair, then there is some k ≥ 1 such that λ = λk, and e
is in the eigenspace of λk.

证明. A corollary of previous lemma.
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Chapter 4

Regularity Theory for Second
Order Elliptic Equations

4.1 L2 Regularity

Goal: Let Ω be bounded in Rn, and

Lu = − (aij(x)ui)j + bi(x)ui(x) + c(x)u, x ∈ Ω.

Assume L is strictly ellptic with ellipticity coefficient λ0 > 0, aij ∈ C1(Ω) ∩ L∞(Ω), , bi, c ∈
L∞(Ω) and aij symmetric almost everywhere. We wish to study how smooth the solution to
the equation Lu = f is, for proper functions.

Definition 4.1. Let Ω be a domain, and Ω′ compactly supported in it. u is some real function
on Ω. Then we define the i-th (i = 1, · · · , n) difference quotient of size h is

∇h
i u(x) =

u(x + hei)− u(x)
h

, x ∈ Ω′,

where 0 < |h| < dist(Ω′, ∂Ω) and ei is the unit vector with i-th entry 1. For notational
convenience, we set

∇hu = (∇h
1u, · · · ,∇h

nu)
T .

Theorem 4.1.1. i. Suppose 1 ≤ p < ∞ and u ∈ W 1,p(Ω), then for any 1 < |h| <
dist(Ω′, ∂Ω), we have ∥∥∇hu

∥∥
Lp(Ω′)

≤ n ∥∇u∥Lp(Ω) .

ii. 1 < p <∞, and u ∈ Lp(Ω′) ∩ L1(Ω), and there is a constant C > 0 such that∥∥∇hu
∥∥
Lp(Ω′)

≤ C, ∀0 < |h| < dist(Ω′, ∂Ω).

Then u ∈W 1,p(Ω′) with ∥∇u∥Lp(Ω′) ≤ C. (False if p = 1.)
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证明. i. Suppose first that u ∈W 1,p(Ω)∩C∞(Ω). For all x ∈ Ω′ and 0 < |h| < dist(Ω′, ∂Ω),
we have

|u(x + hei)− u(x)| =
∣∣∣∣∫ 1

0

d(u(x + thei))

dt
dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

hui(x + thei)dt

∣∣∣∣
≤
∫ 1

0

|ui(x + thei)|dt|h|,

which forces
|∇h

i u(x)| ≤
∫ 1

0

|ui(x + thei)|dt.

Thus, we have ∥∥∇h
i u
∥∥
Lp(Ω′)

≤
∫ 1

0

∥ui(·+ thei)∥Lp(Ω′) dt

=

∫ 1

0

(∫
Ω′+thei

|ui(y)|pdy
)1/p

dt

≤
∫ 1

0

(∫
Ω

|ui(y)|pdy
)1/p

dt

= ∥ui∥Lp(Ω) ,

and hence ∥∥∇hu
∥∥
Lp(Ω′)

≤
∑
i

∥∥∇h
i u
∥∥
Lp(Ω′)

≤ n ∥∇u∥Lp(Ω) .

Now, for u ∈W 1,p(Ω). By density theorem, there exists a sequence uk(x) in W 1,p(Ω) ∩
C∞(Ω) such that uk −→ u in W 1,p(Ω) as k → ∞. A simple application of Fatou’s
lemma gives us the result.

ii. Because ∇hu is bounded in Lp(Ω′), we see after passage to a subsequence, ∇hu converges
to some v⃗ weakly in Lp(Ω′), as h → 0. We claim that v⃗ is the weak derivative of u. It
suffices to show for any test function ϕ in Ω′, we have∫

Ω′
viϕ = −

∫
Ω′
uϕi,

which is obtained by taking h→ 0 on both sides of the equality∫
Ω′

u(x + hei)− u(x)
h

ϕ(x) = −
∫
Ω′
u(x)ϕ(x − hei)− ϕ(x)

−h
.

Now, weak ∇u = v⃗ ∈ Lp(Ω′), and the bound is immediately obtained using the weak
convergence.

Remark: In case of part i., we may consider a domain Ω in the upper half plane H = {xn ≥
0}, and so Ω′ ⊂⊂ Ω may be chosen to touch the boundary ∂H ∩ ∂Ω. The bounds hold true
for 1 ≤ i ≤ n− 1 in this situation.
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Theorem 4.1.2. Interpolation Inequality Let Ω be a domain with C1-smooth boundary.
For any ϵ0 > 0, there is K = K(ϵ0,m, p,Ω) such that for all 1 < ϵ ≤ ϵ0, integer 0 < j ≤ m−1

and u ∈Wm,p(Ω) 1 ≤ p <∞

∑
|α|=j

∥∂αu∥Lp(Ω) ≤ K

ϵ ∑
|α|=m

∥∂αu∥Lp(Ω) + ϵ−
j

m−j ∥u∥Lp(Ω)

 .

Remark: This helps one to establish a new equivalent norm consisting of only the function
itself and its highest order derivatives.

证明. We only give a proof for n = 1, Ω = (0, 1), m = 2, j = 1. Suppose u ∈ C2[0, 1]. By
mean value theorem, we have ∣∣∣∣u(η)− u(ξ)

η − ξ

∣∣∣∣ = |u′(λ)|,

and so

|u′(λ)| ≤ 3(|u(η)|+ |u(ξ)|).

According to F.T.C., we have

u′(x) = u′(λ) +

∫ x

λ

u′′(t)dt,

and hence

|u′(x)| ≤ 3(|u(η)|+ |u(ξ)|) +
∫ 1

0

|u′′(t)|dt.

Integrate w.r.t. ξ from 0 to 1/3 and η from 2/3 to 1, and see that

|u′(x)| ≤ 9

∫ 1

0

|u(t)|dt+
∫ 1

0

|u′′(t)|dt.

Thus,

|u′(x)|p ≤ 2p−19p
(∫ 1

0

|u|
)p

+ 2p−1

(∫ 1

0

|u′′|
)p

≤ 2p−19p
(∫ 1

0

|u|p
)
+ 2p−1

(∫ 1

0

|u′′|p
)
, ,.

For v ∈ C2[a, b], if we define u(t) = v(bt+ (1− t)a), we obtain a similar estimate∫ b

a

|v′|p ≤ 2p−19p

(b− a)p

∫ b

a

|v|p + 2p−1(b− a)p
∫ b

a

|v′′|p.

W.T.S. for all ϵ0 > 0, there is such K such that if 0 < ϵ ≤ ϵ0,

∥u′∥Lp(0,1) ≤ K
(
ϵ ∥u′′∥Lp(0,1) + ϵ−1 ∥u∥Lp(0,1)

)
.
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For 0 < ϵ ≤ 1, let Kp = 2p−19p, consider 2(Kp/ϵ)
1/p ≥ N ≥ (Kp/ϵ)

1/p > 1, and observe∫ 1

0

|u′|p =
N∑
j=1

∫ j
N

j−1
N

|u′|p

,
≤ KpN

p

∫ j
N

j−1
N

|u|p + Kp

Np

∫ j
N

j−1
N

|u′′|p

≤ 2pK2
p

(
1

ϵp

∫ 1

0

|u|p + ϵp
∫ 1

0

|u′′|p
)
;

If 1 < ϵ ≤ ϵ0, then by ,
∥u′∥Lp(0,1) ≤ K1/p

p (∥u′′∥Lp + ∥u∥Lp) ≤ K1/p
p

(
ϵ ∥u′′∥Lp +

ϵ0
ϵ
∥u∥Lp

)
.

Simply take K = K
1/p
p ϵ0.

Theorem 4.1.3. Interior H2-regularity Theorem Suppose u ∈ H1(Ω) is a weak solution
of Lu = f with f ∈ L2(Ω), then for any Ω′ ⊂⊂ Ω, u ∈ H2(Ω′) and

∥u∥H2(Ω′) ≲L,Ω′,Ω ∥f∥L2(Ω) + ∥u∥L2(Ω) . (4.1.1)

证明. According to the interpolation inequality, it suffices to show∑
|α|=2

∥∂αu∥L2(Ω′) ≤ C
(
∥f∥L2(Ω) + ∥u∥H1(Ω)

)
./

Why / is enough? Take subdomain Ω′ ⊂⊂ Ω1 ⊂⊂ Ω, then / holds true if Ω replaced by
Ω1. Further we take η ∈ C∞

0 (Ω) a cut-off function such that 0 ≤ η ≤ 1 and η ≡ 1 on Ω1.
Recalling from the HW, v = η2u ∈ H1

0 (Ω), and by definition of weak solution, we have∫
Ω

aijui(2ηηiu+ η2ui) + biuiη
2u+ cu2η2 =

∫
Ω

fη2u.

By strict ellipticity

LHS ≥ λ0

∫
Ω

η2|∇u|2 − C

∫
Ω

(
η|u||∇u|+ η2|u||∇u|+ η2u2

)
≥ λ0

∫
Ω

η2|∇u|2 − C

2

∫
Ω

(
ϵη2|∇u|2 + 1

ϵ
u2
)
− C

∫
Ω

u2

≥ λ0

2

∫
Ω

η2|∇u|2 − C

∫
Ω

u2,

and at the mean time
RHS ≤ 1

2

(∫
Ω

|f |2 +
∫
Ω

u2
)
.

The two estimates combined can lead to (4.1.1).
Now, to show /, we want to show∫

Ω

η2|∇h
k(∇u)| ≤ C

(
∥f∥2L2(Ω) + ∥u∥2H1(Ω)

)
.
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Take η ∈ C∞
0 (Ω1) such that 0 ≤ η ≤ 1 and η ≡ 1 on Ω′, where Ω′ ⊂⊂ Ω1 ⊂⊂ Ω. Letting

v ∈ H1
0 (Ω), and f̃ = f − biui − c, we have∫

Ω

aijuivj =

∫
Ω

f̃v.

We further take v = ∇−h
k

(
η2∇h

ku
)
, then for small |h|, v is well defined in Ω1 and is compactly

supported. According to HW, we know v ∈ H1
0 (Ω). Inserting v into the above equality, we

observe

−
∫
Ω

aijui
(
∇−h

k

(
η2∇h

ku
))

j
= −

∫
Ω

aijui∇−h
k

(
η2∇h

ku
)
j

=

∫
Ω

∇h
k (aijui)

(
η2∇h

ku
)
j

=

∫
Ω

(
∇h

k(ui)aij(·+ hek) + ui∇h
kaij

) (
2ηηj∇h

ku+ η2∇h
k(uj)

)
=

∫
Ω1

(· · ·)

≥ λ0

∫
Ω1

η2|∇h
k(∇u)|2 − C

∫
Ω1

η
(
|∇h

k(∇u)|2 + |∇u||∇h
ku|+ |∇u||∇h

k(∇u)|
)

≥ λ0

∫
Ω1

η2|∇h
k(∇u)|2 − C

∫
Ω1

1

2

(
ϵη2|∇h

k(∇u)|2 +
|∇h

ku|2

ϵ

)
− C

∫
Ω1

(
η2|∇u|2

2
+

|∇h
ku|2

2

)
− C

∫
Ω1

1

2

(
ϵη2|∇h

k(∇u)|2 +
|∇u|2

ϵ

)
≥ λ0

∫
Ω1

η2|∇h
k(∇u)|2/2− C

∫
Ω1

|∇h
ku|2 − C

∫
Ω1

|∇u|2.

Recalling f̃ = f − biui − cu, we have similarly

−
∫
Ω

f̃v ≤
∫
Ω

(
ϵv2 +

f̃2

4ϵ

)

≤ ϵn

∫
Ω

η2|∇h
k(∇u)|2 + C

∫
Ω1

(∇h
ku)

2 + Cϵ

∫
Ω

(f2 + b2iu
2
i + c2u2)

≤ ϵn

∫
Ω

η2|∇h
k(∇u)|2 + C

(∫
Ω

f2 +

∫
Ω

u2 +

∫
Ω

|∇u|2
)
.

When ϵ is small, we may apply ii. of Theorem (4.1.1), and then we are done because 0 ≤ η ≤ 1

and η ≡ 1 on Ω′.

Theorem 4.1.4. Higher Order Interior Regularity Let Ω bounded in Rn, and suppose

Lu = −(aij(x)ui)j + bi(x)ui + c(x)u

is strictly elliptic in Ω, aij ∈ Cm+1(Ω) ∩ L∞(Ω), bi, c ∈ Cm(Ω) ∩ L∞(Ω), where m ≥ 0 (when
m = 0, no need to assume bi, c ∈ C0(Ω)), and f ∈ Hm(Ω). Let u ∈ H1(Ω) be a weak solution
of Lu = f , then u ∈ Hm+2

loc (Ω), and for any compactly supported subdomain Ω′, we have

∥u∥Hm+2(Ω′) ≲L,Ω′,Ω ∥f∥Hm(Ω) + ∥u∥L2(Ω) .
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证明. Formally apply ∂i to both sides of Lu = f , and obtain a new equation Lw = f̃ . Check
that ∂iu is a weak solution to it. Iteratively applying the prior theorem, we are done.

Corollary 4.1.1. Suppose aij , bi, c and f are smooth on Ω, then u is also smooth on Ω.

证明. Recall that by Sobolev Imbedding Theorem, we have

Wm+2,2
loc (Ω) ↪→ Cm+2−n

2 (Ω),

for m+ 2− n
2

not an integer.

Now, we wish to study the global regularity of the solution. Before that, we study the
effect of the boundary geometry on functions.

Definition 4.2. Given a domain Ω, we say its boundary ∂Ω is Ck-smooth for k ≥ 0 if for
all x0 ∈ ∂Ω, there is r > 0 such that after rotating the domain in Rn w.r.t. x0

• Br(x0) ∩ Ω = {x ∈ Br(x0); xn > ϕ(x1, · · · , xn−1) =: ϕ(x′)}, with ϕ some Ck-smooth
function;

• ∂Ω ∩Br(x0) = {x ∈ Br(x0); xn = ϕ(x′)}.

Write x0 = (x01, · · · , x0n) = (x′
0, x

0
n). With the above defintion, we may locally straighten

∂Ω near x0 by setting

Φ : Br(x0) → Rn

x 7→ (x′ − x′
0, xn − ϕ(x′)).

Thus, Φ is Ck-smooth on the ball, and it is clearly injective according to its defintion. (We
denote its image by N+.) Its Jacobian is

DΦx =


1 0 · · · 0

0 1 · · · 0
...

... . . . ...
−ϕ1(x) −ϕ2(x) · · · 1

 .

Thus, the volume form |det(DΦ∗DΦ)|dx = dx and so the reparametrization Φ is equiareal.
Moreover, for u ∈ C1(Ω)∩W 1,p(Ω), we may define ũ(y) = u(Φ−1(y)) for y ∈ N+, and obtain
the bound

∥∇yũ∥Lp(N+) =
∥∥∥(DΦ−1

•
)∗

(∇xu)(Φ
−1(•))

∥∥∥
Lp(N+)

≤
∥∥DΦ−1

∥∥
L∞(N+)

∥∇xu∥Lp(Br(x0)∩Ω)

≤ C1 ∥∇xu∥Lp(Br(x0)∩Ω) ,

and reversely, we also have

∥∇xu∥Lp(Br(x0)∩Ω) ≤ C2 ∥∇yũ∥Lp(N+) .
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After a density argument, we know W 1,p(Ω ∩Br(x0)) is equivalent to W 1,p(N+) by the map
u 7→ ũ. Similarly one can show W 1,p

0 (Ω ∩ Br(x0)) is equivalent to W 1,p
0 (N+) by using the

density of C∞
0 (Ω) in W 1,p

0 (Ω) for general Ω.

Theorem 4.1.5. Trace Theorem Let Ω be bounded with C1-smooth boundary. Then there
is a linear and bounded operator

T :W 1,p(Ω) → Lp(∂Ω), 1 ≤ p <∞

such that

1. Tu = u
∣∣
∂Ω

if u ∈W 1,p(Ω) ↪→ C(Ω̄);

2. Generally, we have the bound

∥Tu∥Lp(∂Ω) ≤ C ∥u∥W 1,p(Ω) , u ∈W 1,p(Ω).

Tu will be called the trace of u on ∂Ω.

证明. Recalling that ∂Ω ∈ C1 implies that C1(Ω̄) is dense in W 1,p(Ω), we start with a
function u ∈ C1(Ω̄). Let Br(x0) be a small ball centered at x0 ∈ ∂Ω such that we have a
straightening map Φ : Br(x0)∩Ω → N+ (the same meaning as before.) By prior arguments, we
know Φ induces a canonical equivalence between W 1,p(A) to W 1,p(Φ(A)) for any subdomain
A ⊂ Br(x0) ∩ Ω, and hence only have to consider the problem on N+. By compactness of
Br(x0) and because Φ is a C1-diffeomorphism, there should be some small ϵ > 0 such that
the set {yn = ϵ} ∩ N+ is simply connected and its projection to {yn = 0} covers Br/2(0′).
According to F.T.C., we have

u(y′, 0) = u(y′, t)−
∫ t

0

uyn
(y′, s)ds, 0 < t < ϵ,

and so
|u(y′, 0)|p ≤ 2p

(
|u(y′, t)|p +

∣∣∣∣∫ ϵ

0

uyn
(y′, s)ds

∣∣∣∣p) , 0 < t < ϵ.

Therefore, we have∫
Br/2(0′)

|u(y′, 0)|pdy′ ≤ 2p

ϵ

(∫ ϵ

0

∫
{yn=ϵ}∩N+

|u(y′, t)|pdy′dt+ ϵp
∫ ϵ

0

∫
{yn=ϵ}∩N+

|uyn
(y′, s)|pdy′ds

)
≤ Cp,ϵ

(∫
Ω

|u|p +
∫
Ω

|∇u|p
)
.

Because ∂Ω is compact, we obtain the bound all over the boundary. Now, for general u ∈
W 1,p(Ω), one may first find a sequence of C1(Ω̄) functions un ∈ C1(Ω̄) that approximates u
in W 1,p(Ω). According to the above bound, we know un

∣∣
∂Ω

is a Cauchy sequence in Lp(∂Ω),
and hence one may define Tu = limn→∞ un

∣∣
∂Ω

with limit taken in Lp(∂Ω). After a density
argument, we know the operator T is well-defined and we also have the bound in item 2.. In
item 1., for u ∈ W 1,p(Ω) ↪→ C0(Ω̄), we simply use the uniform convergence. Notice this case
happens when p > n.
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Theorem 4.1.6. Suppose Ω is bounded with C1-smooth ∂Ω, u ∈W 1,p(Ω). Then u ∈W 1,p
0 (Ω)

if an only if Tu = 0.

证明. By definition of W 1,p
0 (Ω), u can be approximated by a sequence of C∞

0 (Ω) functions,
whose traces are 0. By trace theorem, we know that Tu = 0 because T is continuous.
Reversely, if Tu = 0, then there is a sequence of C1(Ω̄) functions um such that um converges
to u in W 1,p(Ω) and Tum converges to 0 as n→ ∞. After choosing a proper parametrization,
we reduce the problem to the case where Ω = Rn−1 ×R+ the upper half plane, and ∂Ω is the
hyperplane {yn = 0}. Consider a nondecreasing cut-off function on ϕ ∈ C∞

0 (R+) such that
ϕ ≡ 1 on (0, 1) and ϕ ≡ 0 on [2,∞), and define

ûk,m(y) = um(y)(1− ϕ(kyn)), k,m ≥ 1.

By HW, each ûk,m(y) are in W 1,p
0 (Ω). It then suffices to show ûk,m −→ um in W 1,p(Ω) as

k → ∞. Observe that
∇y′ ûk,m(y) = ∇y′um(y),

and
∂yn

ûk,m(y) = ∂yn
um(y)(1− ϕ(kyn))− kϕ′(kyn)um(y).

Therefore, we have

∥∇ûk,m −∇um∥Lp(Ω) ≤
(∫

Ω

|∂yn
um(y)ϕ(kyn) + kϕ′(kyn)um(y)|pdy

)1/p

≤
(∫

Ω

|∂yn
um(y)ϕ(kyn)|pdy

)1/p

+

(∫
Ω

|kϕ′(kyn)um(y)|pdy
)1/p

≤ o(1) +

(∫ 2/k

1/k

∫
Rn−1

kpCp|um(y′, yn)|pdy′dyn

)1/p

F.T.C.

≤ o(1) +

(∫ 2/k

1/k

∫
Rn−1

kpCp

∣∣∣∣um(y′, 0) +

∫ yn

0

∂yn
um(y′, s)ds

∣∣∣∣p dy′dyn

)1/p

Minkowski+Hölder
≤ o(1) + Ck

(∫ 2/k

1/k

sp−1ds

)1/p

∥∂yn
um∥Lp(Rn−1×[0,2/k])

≤ C ∥∂yn
um∥Lp(Rn−1×[0,2/k])

L.D.C.T.−→ 0,

as k → ∞.

Now, we arrive at the gate to investigate the global estimate. Recall

Lu = −(aij(x)ui)j + bi(x)ui + c(x)u.

We assume that aij ∈ C1(Ω̄), bi, c ∈ L∞(Ω), ∂Ω ∈ C2 and L is strictly elliptic. If the boundary
condition is Dirichlet, it is reasonable to ask whether the solution is globally H2.
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Theorem 4.1.7. Suppose u ∈ H1
0 (Ω) is a weak solution of

(DBV P )

Lu = f, in Ω,

u = 0, on ∂Ω,

where f ∈ L2(Ω). Then u ∈ H2(Ω), and we have

∥u∥H2(Ω) ≲Ω,L ∥u∥L2(Ω) + ∥f∥L2(Ω) .

证明. Let xi, i = 1, · · · , N be finitely many points on ∂Ω and {(Bi := Bri(xi),Φi)} be an
atlas of ∂Ω and B0 ⊂⊂ Ω such that Ω ⊂ ∪N

i=0Bi. By interior regularity, the bound on B0 is
automatically obtained, and the central issue is to obtain the bound∑

|α|=2

∥∂αu∥Lp(Ω∩Bi)
≲ ∥f∥L2(Ω) + ∥u∥H1(Ω) .

Here if the above estimate is true, then one may apply interpolation inequality to reduce the
H1-norm of u to its L2-norm.

To show , we take η a test function on B2ri(xi) such that 0 ≤ η ≤ 1 and η ≡ 1 on Bi.
Apply L on ηu =: ū, we have

L(ū) = −(aij(ηu)i)j + bi(ηu)i + cηu

= ηf + trash

=: f̄ ∈ L2(Ω), 

where by computation we know “trash” has its L2-norm bounded by C ∥u∥H1 . Moreover,
we have ū = 0 on ∂(Ω ∩ B2ri(xi)). The idea is that for k = 1, · · · , n − 1, we can as before
do difference quotient (we may reduce the problem to the case that the domain is exact the
upper half plane)

ui(x + hek)− ui(x)
h

, i = 1, · · · , n.

The remaining term ∂2u
∂x2

n
will be obtained by using the equation

−ann
∂2u

∂x2n
= blahblah,

where ann(x) > λ0 by strict ellipticity.
Let Φ be a C2-smooth diffeomorphism that transforms B2ri(xi) ∩ Ω into a subdomain

N+
2 of the upper half space {yn > 0}, and B2ri(xi) ∩ ∂Ω = {yn = 0} ∩ ∂N+

2 . We also denote
Φ(Bi) by N+

1 . For any v ∈ H1
0 (B2ri(xi) ∩ Ω), we have an induced map v 7→ ṽ = v ◦ Φ−1. We

also set ũ = ū ◦ Φ−1, ãkl = ∂yk

∂xi
aij ◦ Φ−1 ∂yl

∂xj
, and b̃k = ∂yk

∂xi
bi ◦ Φ−1, and so are c̃, f̃ . Since ū is

a weak solution to , we have∫
Ω∩B2ri

aijūivj + biūiv + cūv =

∫
Ω∩B2ri

f̄v

=⇒
∫
N+

2

ãklũkṽl + b̃kũkṽ + c̃ũṽ =

∫
N+

2

ṽf̃ .
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Observe that ãkl ∈ C1(N+
2 ), and b̃k, c̃ ∈ L∞(Ω). By linear algebra and that Φ is nondegener-

ate, we know ũkl is still strictly elliptic.
Now, we have reduced the problem into the case that the boundary is part of the hyperlane

{yn = 0}. Notice that N+
1 has positive distance from ∂N+

2 ∩{yn > 0}, and so in directions ek
for k = 1, · · · , n− 1, we may do as before difference quotients and obtain the L2(N+

1 )-bounds
for ∂l∂ku with (i, k) ̸= (n, n). By interior regularity, we may pointwise do differentiation on
the equation (here we need Φ to be C2), and obtain

ũnn =
−(ãkl)lũk − ãklũkl − f̃ + trash

ãnn
.

Theorem 4.1.8. Higher Order Global Regularity Suppose L is strictly elliptic, aij ∈
Cm+1(Ω̄), m ≥ 0, bi, c ∈ Cm(Ω̄), f ∈ Hm(Ω), ∂Ω ∈ Cm+2, then any weak solution u ∈ H1

0 (Ω)

of the (DBVP) must be in Hm+2(Ω), and

∥u∥Hm+2(Ω) ≲L,Ω ∥f∥Hm(Ω) + ∥u∥L2(Ω) .

Corollary 4.1.2. If aij , bi, c ∈ C∞(Ω̄), f ∈ C∞(Ω̄), ∂Ω ∈ C∞, then u ∈ C∞(Ω̄).

Epilogue of L2-theory: (De Giorgi-Nash-Moser theory) Suppose Ω bounded, aij , bi, c bounded
functions and L strictly elliptic.

Theorem 4.1.9. Suppose u is a weak solution of Lu = f in Ω with f ∈ Lq(Ω), q > n
2
. Then

1. (interior regularity) For all Ω′ ⊂⊂ Ω, there is some α = α(n,L,Ω′,Ω, q) such that
u ∈ Cα(Ω̄′), and

∥u∥Cα(Ω̄′) ≲L,Ω′,Ω,n,q ∥u∥L2(Ω̄) + ∥f∥Lq(Ω) ;

2. If u ∈ H1
0 (Ω), then u ∈ L∞(Ω), and

∥u∥L∞(Ω) ≲L,Ω′,Ω,n,q ∥u∥L2(Ω̄) + ∥f∥Lq(Ω) ;

3. If u ∈ H1
0 (Ω), and ∂Ω ∈ C2, then there is some α = α(n,L,Ω, q) such that u ∈ Cα(Ω̄),

and
∥u∥Cα(Ω̄) ≲n,L,Ω,q ∥u∥L2(Ω̄) + ∥f∥Lq(Ω) .

Neumann-Robin Boundary Value Problem: We consider

(RBV P )

Lu = f, in Ω,

∂u
∂n⃗A

+ β(x)u = 0, on ∂Ω,

where n⃗A := ∇u · (aij)n×nn⃗, with n⃗ the unit outer normal field on ∂Ω. A question is that
how can one define its weak solution? Formally, we suppose everything is smooth, and for
v ∈ C1(Ω̄), we have ∫

Ω

−(aijui)jv + (biui + cu)v =

∫
Ω

fv.
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Integration by parts gives that

LHS =

∫
Ω

aijuivj −
∫
∂Ω

(aijuin⃗j)v +

∫
Ω

(biui + cu)v =

∫
Ω

fv, .

Definition 4.3. We say u is a weak solution of (RBVP), if u ∈ H1(Ω) and  holds for all
v ∈ H1(Ω).

From now on, we assume ∂Ω ∈ C1, aij , bi, c ∈ L∞(Ω), β ∈ L∞(∂Ω) and L strictly elliptic.
Existence: Full version of Fredholm Alternatives hold; Uniqueness holds if bi = 0, c ≥ 0 and
β ≥ 0.

Theorem 4.1.10. Global H2-regularity Suppose ∂Ω ∈ C2, aij ∈ C1(Ω̄), bi, c ∈ L∞(Ω),
β ∈ C1(∂Ω), u is a weak solution of (RBVP). Then u ∈ H2(Ω), and

∥u∥H2(Ω) ≲ ∥f∥L2(Ω) + ∥u∥L2(Ω) .

For more information, see Tag der Prüfung’s Thesis.

4.2 Lp-theory for Elliptic Equations (1 < p < ∞)

Let Ω be bounded, and
Lu = aijuij + biui + cu,

with aij ∈ C0(Ω̄), bi, c ∈ L∞(Ω). We also assume that L is strictly elliptic on the domain.

Definition 4.4. We say u is a strong solution of

(BV P )

Lu = f, in Ω,

u = 0, on ∂Ω,

if

• u ∈W 2,p ∩W 1,p
0 (Ω);

• PDE holds pointwise on Ω.

Fredholm Alternative: Suppose ∂Ω ∈ C2, then uniqueness of (BVP) is equivalent to the
existence of strong solution for all f ∈ Lp(Ω). We will not prove this fact here.

We also have the following estimates (without proofs).

Theorem 4.2.1. Interior Lp-estimate Let u be a strong solution of Lu = f , then for any
Ω′ ⊂⊂ Ω, we have

∥u∥W 2,p(Ω′) ≲n,p,L,Ω′,Ω ∥f∥Lp(Ω) + ∥u∥Lp(Ω) .

Theorem 4.2.2. Global Lp-estimate Let u be a strong solution of Lu = f and ∂Ω ∈ C2,
then we have

∥u∥W 2,p(Ω) ≲n,p,L,Ω ∥f∥Lp(Ω) + ∥u∥Lp(Ω) .
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Lp-regularity Theory

Theorem 4.2.3. 1. Suppose ∂Ω ∈ C2, u ∈ W 2,p(Ω) is a strong solution of (BVP), f ∈
Lq(Ω) for p < q <∞, then u ∈W 2,q(Ω) ∩W 1,q

0 (Ω);

2. If u ∈ W 2,p(Ω) is a strong solution of Lu = f , f ∈ Lq(Ω), with p < q < ∞, then
u ∈W 2,q

loc (Ω).

证明. 1. (Bootstrap Method) Consideraijvij + bivi = f − cv, on Ω,

v = 0, on ∂Ω.
(4.2.1)

We want the right hand side of the equation to be in Lq(Ω). To see this, we recall by
Sobolev Imbedding

W 2,p(Ω) ↪→ Lp1(Ω),

for

p1 =


np

n−2p
, if n− 2p > 0,

arbitrarily big, if n− 2p ≤ 0.

Then p1 > p and hence u ∈ Lp1(Ω). If p1 ≥ q, then RHS of the PDE is in Lq(Ω). Thus,
the equation (4.2.1) has “c = 0”, which implies that it has uniqueness of solutions both
in Lp and Lq settings. According to Fredholm Alternatives, (4.2.1) has a unique strong
solution v ∈ W 2,q(Ω) ∩W 1,q

0 (Ω). Clearly, v is also a strong solution in Lp setting, and
hence by uniqueness of solution u ≡ v, and thus u ∈ W 2,q(Ω) ∩W 1,q

0 (Ω). If p < p1 < q,
then RHS of PDE is in Lp1(Ω). By above arguments, we have u ∈W 2,p1(Ω)∩W 1,p1

0 (Ω).
Because

W 2,p1(Ω) ↪→ Lp2(Ω),

where pn is defined similarly to p1, with p replaced by pn−1 for n ≥ 2. Thus RHS of
PDE is in Lmin(q,p2)(Ω). By repeating the above arguments, we have either pk ≥ q for
some k ≥ 2, or pk an increasing sequence bounded by q. It suffices to consider the latter
case. Observe that both sides of

pk+1 =
npk

n− 2pk

must have a limit. The limit of the sequence p∞ then satisfies the equality

p∞ =
np∞

n− 2p∞
,

and so p∞ = 0, which is impossible, because each pk ≥ 1;

2. For any Ω′ ⊂⊂ Ω, we take η a cut-off function that is compactly supported on Ω, and
equals 1 on Ω′. Let v = ηu, then we have

Lv = aijvij + bjvj + cv = ηLu+ aijηiju+ 2aijηiuj + biηiu, 
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and v
∣∣
∂Ω1

= 0 for Ω′ ⊂⊂ Ω1 ⊂⊂ Ω and ∂Ω1 ∈ C∞. Observe u ∈ W 2,p(Ω) ↪→ Lp1(Ω),
and ui ∈W 1,p(Ω) ↪→ Lp1(Ω) for

p1 =


np
n−p

, if n− p > 0,

arbitrarily big, if n− p ≤ 0.

Then p < p1 < p1, and thus in , RHS ∈ Lmin(q,p1)(Ω). If p1 ≥ q, then we are done.
Otherwise, we have, according to 1., v ∈W 2,p1(Ω1), and thus u ∈W 2,p1(Ω′). Similar to
1., we may do bootstrap, and obtain the result.

Theorem 4.2.4. Higher Order Regularity

1. (Global Version) Suppose ∂Ω ∈ Cm+2, f ∈ Wm,q(Ω) for 1 < q < ∞ with m ≥ 1.
aij , bi, c ∈ Cm(Ω̄). If u ∈W 2,p(Ω) ∩W 1,p

0 (Ω) (1 < p <∞) is a strong solution ofLu = f, in Ω,

u = 0, on ∂Ω.

Then u ∈W 2+m,q(Ω);

2. (Interior Version) Suppose f ∈ Wm,q(Ω), aij , bi, c ∈ Cm(Ω̄), u ∈ W 2,p(Ω) is a strong
solution of Lu = f , then u ∈Wm+2,q

loc (Ω).

Schauder Theory for Classical Solutions
We consider the operator Lu = aijuij+biui+cu on bounded domain Ω, where ∂Ω ∈ C2+α,

and aij , bi, c ∈ Cα(Ω̄).
Fredholm Alternative: Consider

(BV P )

Lu = f, on Ω,

u = 0, on ∂Ω.

Then uniqueness of C2+α(Ω̄) solution for (BVP) is equivalent to the existence of such a
solution for every f ∈ Cα(Ω̄).
Remark:

1. Uniqueness prevails if c ≤ 0 on Ω (Maximum Principle);

2. Existence under weak condition (see Gilbarg Trudinger): Assume aij , bi, c ∈ Cα
loc(Ω) ∩

L∞(Ω) and strict ellipticity of L; ∂Ω satisfies exterior sphere condition at every point
and c ≤ 0 all over the domain. Then for every ϕ ∈ C0(∂̄Ω) and f ∈ Cα

loc ∩L∞(Ω), there
is a unique u ∈ C0(Ω̄) ∩ C2+α

loc (Ω) solving the equation.

Theorem 4.2.5. Schauder Estimates
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1. (Interior Estimate) Suppose u ∈ C2+α
loc (Ω) is a solution of Lu = f ∈ Cα(Ω̄). Then for

any Ω′ ⊂⊂ Ω, we have

∥u∥C2+α(Ω′) ≲α,n,L,Ω′,Ω ∥f∥Cα(Ω̄) + ∥u∥Cα(Ω̄) ;

2. (Global Estimate) Suppose ∂Ω ∈ C2+α, u ∈ C2+α(Ω̄) is a solution to the (BVP), then

∥u∥C2+α(Ω̄) ≲α,n,L,Ω ∥f∥Cα(Ω̄) + ∥u∥Cα(Ω̄) .

User-friendly Regularity Theorem

Theorem 4.2.6. 1. (Global Version) Suppose aij , bi, c, f ∈ Cα(Ω̄) and ∂Ω ∈ C2+α. If
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω) (1 < p <∞) is a strong solution of (BVP), then u ∈ C2+α(Ω̄);

2. (Interior Version) Suppose aij , bi, c, f ∈ Cα
loc(Ω̄), u ∈ W 2,p

loc (Ω) is a strong solution of
Lu = f , then u ∈ C2+α

loc (Ω);

3. Let Au = −(aijui)j+biui+cu. Suppose A is strictly elliptic on the domain, aij ∈ C1(Ω̄),
bi, c ∈ L∞(Ω). Assume u ∈ H1

0 (Ω) is a weak solution ofAu = f, on Ω,

u = 0, on ∂Ω,

where ∂Ω ∈ C2, and f ∈ Lp(Ω), with p ≥ 2n
n+2

for n ≥ 3 (arbitrary if n = 1, 2). Then
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω);

4. Suppose conditions in 3., aij ∈ C1+α(Ω̄), bi, c, f ∈ Cα(Ω̄), ∂Ω ∈ C2+α (0 < α < 1).
Then u ∈ C2+α(Ω̄).

证明. 1. For any q ∈ (p,∞), we have f ∈ Cα(Ω̄) ↪→ Lq(Ω). By Global Lq-regularity, we
see

u ∈W 2,q(Ω) ↪→ C2−n
q (Ω̄).

Thus, f − cu ∈ Cα(Ω̄). Now, consideraijvij + bivi + cv = f − cu, in Ω,

v = 0, on ∂Ω,
.

Observe that the problem  has uniqueness of solution because “(c ≡ 0)”. According
to Fredholm Alternative (Schauder Setting), it has a unique solution v ∈ C1,α(Ω̄). It is
evident that v ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) is also a strong solution of . Also by uniqueness
of solution, we have u ≡ v;

2. For any Ω′ ⊂⊂ Ω, we take a cut-off function η on Ω, such that 0 ≤ η ≤ 1 and equals 1
on Ω′. By Lp-interior regularity, we have u ∈W 2,q

loc (Ω) ↪→ C
2−n

q

loc (Ω) for any q > 1. If we
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choose q to be large, we have u ∈ C1+α
loc (Ω). Let ū = ηu, we then have a new equationLū = ηf + aijηiju+ aij(ηiuj + ηjui) + biηiu ∈ Cα(Ω̄), on Ω,

ū = 0, on ∂Ω.

Thus ū ∈W 2,p(Ω)∩W 1,p
0 (Ω) is a strong solution of the above equation. By 1., we know

ū ∈ C2+α(Ω̄), which implies that u ∈ C2+α
loc (Ω);

3. When p ≥ 2, then f ∈ L2(Ω), and so by H2-global regularity, we have u ∈W 2,2(Ω). We
claim u is a strong solution in this setting: For any v ∈ C∞

0 (Ω), because u is a weak
solution, we have ∫

Ω

aijuivj + biuiv + cuv =

∫
Ω

fv.

Recalling what we did in HW, we have

First term of LHS =

∫
Ω

−(aijui)jv

=

∫
Ω

[−(aij)jui − aijuij ] v.

Replacing v by an approximation of identity, we see

−aijuij + (bi − (aij)j)ui + cu = f, a.e.

Now, Lp-regularity theory gives the result. When 1 < p < 2, we define

Ãv = −(aijvij) + (bi − (aij)j)vi,

and consider Ãv = f − cu ∈ Lp(Ω) in Ω,

v = 0, on ∂Ω,
.

By Fredholm Alternative,  has one and only one strong solution v ∈W 2,p(Ω)∩W 1,p
0 (Ω).

Is v an H1
0 -weak solution?

– v ∈ L2(Ω)? Recall that W 2,p(Ω) ↪→ Lq(Ω), where q ≥ np
n−2p

. But p ≥ 2n
n+2

will
evidently imply that ;

– ∇v ∈ L2(Ω)? Observe that ∇v ∈W 1,p(Ω) ↪→ Lr(Ω) for r ≥ np
n−p

. But we also have
np
n−p

≥ 2;

– Tv = 0 in H1-sense. Because ∂Ω ∈ C1, we have that C∞(Ω̄) is dense in W 2,p(Ω).
Thus, there is a sequence vk ∈ C∞(Ω̄) that converges to v in W 2,p(Ω) ↪→ H1(Ω).
Thus, by continuity of trace in H1(Ω), we have Tvk = vk

∣∣
∂Ω

−→ Tv in L2(∂Ω) as
k → ∞. But v ∈ W 1,p

0 (Ω), we have Tvk = vk
∣∣
∂Ω

−→ 0 in Lp(Ω) as k → ∞. After
passage to a subsequence, we have Tv = 0 a.e., which implies that v ∈ H1

0 (Ω).
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Because v is a W 2,p strong solution of Ãv = f − cu in Ω, we have for all w ∈ H1
0 (Ω)∫

Ω

Ãvw =

∫
Ω

(f − cu)w,

where by old HW, we have LHS =
∫
Ω
aijuiwj + biuiw. Thus v is a weak solution of

Ãv = f − cv. Because “c ≡ 0”, we have uniqueness, and hence u ≡ v;

4. Apply 3. and 1..

Remark:

• f ∈ Lp(Ω) induces a linear and bounded functional on H1
0 (Ω). Define for v ∈ H1

0 (Ω) 7→∫
Ω
fv, we have the following bound∫

Ω

|fv| ≤ ∥f∥p ∥v∥p′ .

Recalling H1
0 (Ω) ↪→ Lq(Ω) with q ≥ 2n

n−2
, we only have to show p′ ≤ q. Observe

p

p− 1
≤ 2n

n− 2

is equivalent to
p ≥ 2n

n+ 2
,

which is exactly the assumption on p;

• If B.C. is Robin/Neumann ∂u
∂n⃗A

+ βu = 0 on ∂Ω, then 3. holds if β ∈ C1(∂Ω) and 4.
holds if β ∈ C1+α(∂Ω).
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Chapter 5

Function Space Theories for
Second Order Parabolic
Equations

Let Ω be bounded, and 0 < T < ∞, we define QT = Ω × (0, T ), ST = Ω × (0, T ) and
ΓT = ST ∪ Ω̄× {0}. A parabolic operator defined on the domain is of the form

Mu =
∂u

∂t
+Au,

where
Au = −(aij(x, t)ui)j + bi(x, t)ui + c(x, t)u.

We say M is strictly parabolic on QT if there is λ0 > 0 such that

(aij(x, t)) ≽ λ0In×n, a.e. on QT .

5.1 L2-theory for Parabolic Equations

Definition 5.1. Anisotropic Sobolev Spaces

• For k ≥ 1, we define

W 2k,k
p (QT ) = {u ∈ Lp(QT ); weak ∂α

x ∂
β
t u ∈ Lp(QT ) for |α|+ 2|β| ≤ 2k},

on which we may introduce a norm

∥u∥W 2k,k
p (QT ) =

 ∑
|α|+2|β|≤2k

∥∥∥∂α
x ∂

β
t u
∥∥∥p
Lp(QT )

1/p

;

• For l, k = 0 or 1, we define

W l,k
p (QT ) = {u ∈ Lp(QT ); ∂

α
x u, ∂

β
t u ∈ Lp(QT ), |α| ≤ l, β ≤ k}.
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Remark:

1. W 2,1
p = {u, ut,∇xu,∇2

xu ∈ Lp(QT )};

2. When l = k = 1, then W 1,1
p (QT ) =W 1,p(QT );

3. We say

o

W
1,k

p (QT ) = closure of C∞(QT ) functions with restriction 0 on ST in the space W 1,k
p (QT ).

Theorem 5.1.1. Density Theorem If ∂Ω ∈ C1, then all spaces above (except
o

W
1,k

p (QT ))
have dense subset C∞(QT ).

Theorem 5.1.2. Imbedding Theorem

1. Suppose 1 < P <∞. Then

W 0,1
p (QT ) ↪→ C0([o, T ];Lp(Ω)),

that is, for any u ∈ W 0,1
p (QT ), the function t ∈ [0, T ] 7→ u(·, t) ∈ Lp(Ω) is continuous,

and
max
t∈[0,T ]

∥u(·, t)∥Lp(Ω) ≤ (p+ 1/T )1/p ∥u∥W 0,1
p (QT )

2. Let k ≥ 1, ∂Ω ∈ C2 and u ∈W 2k,k
2 (QT ). Then

u ∈ C0([0, T ];H2k−1(Ω))

ut ∈ C0([0, T ];H2k−3(Ω))

...
∂k−1u

∂tk−1
∈ C0([0, T ];H1(Ω)).

Moreover, these inclusions are continuous.

证明. 1. Let u ∈ C∞(QT ), we have

d

dt

∫
Ω

|u(x, t)|pdx =

∫
Ω

d

dt
|u(x, t)|pdx

=

∫
Ω

p|u(x, t)|p−1ut · sign(u)dx,

where p > 1 makes sure the above equality. Now, for any 0 ≤ s, t ≤ T , we have∫
Ω

|u(x, t)|pdx −
∫
Ω

|u(x, s)|pdx ≤ p

∣∣∣∣∫ t

s

∫
Ω

|u(x, τ)|p−1|ut(x, τ)|dxdτ
∣∣∣∣

≤ p

(∫
QT

|ut|p
)1/p(∫

QT

|u|p
) p−1

p

≤ p ∥u∥p
W 0,1

p (QT )
.
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Observe by continuity,∫
QT

|u(x, t)|pdxdt =
∫ T

0

(∫
Ω

|u(x, t)|pdx
)
dt

= T

∫
Ω

|u(x, s)|pdx,

for some s ∈ [0, T ]. Therefore, we have∫
Ω

|u(x, t)|pdx ≤ 1

T

∫
QT

|u(x, t)|pdxdt+ p ∥u∥p
W 0,1

p (QT )

≤ (p+ 1/T ) ∥u∥p
W 0,1

p (QT )
,

and thus we have the estimate. A density argument show that this is true for all elements
in W 0,1

p (QT );

2. It suffices to show
W 2k,k

2 (QT ) ↪→ C0([0, T ];H2k−1(Ω)).

To see this, we need

Theorem 5.1.3. Extension Theorem For all Ω ⊂⊂ Ω′, we set Q′
T = Ω′ × (0, T ).

Then there is an extension operator

E :W 2k,k
p (QT ) →

o

W
2k,k

p (Q′
T ),

such that

– E is linear and bounded;

– Eu
∣∣
Qt

= u;

– Eu = 0 near S′
T .

Suppose u ∈ C∞(QT ), and let ū = Eu, we have

d

dt

∫
Ω′

|∇ū|2 =
∫
Ω′

2∇ū · ∇ūt

= −2

∫
Ω′

∆ūūt.

For all 0 ≤ t, s ≤ T , we have∫
Ω′

|∇ū(x, t)|2dx −
∫
Ω′

|∇ū(x, s)|2dx ≤ 2

∫
Q′

T

|∆ūūt|

≤
∫
Q′

T

|∆ū|2 +
∫
Q′

T

|ūt|2

≤ ∥ū∥ o
W

2,1

2 (Q′
T )

≤ C ∥u∥W 2,1
2 (QT ) .
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Taking s ∈ [0, T ] such that∫
Ω′

|∇ū(x, s)|2dx =
1

T

∫
Q′

T

|∇ū|2

≤ 1

T
∥ū∥2W 2,1

2 (Q′
T ) ,

we then have ∫
Ω

|∇u(x, t)|2dx ≤ (C/T + C) ∥u∥2W 2,1
2 (QT ) , t ∈ [0, T ].

Combining this estimate with the one from 1., we have

∥u(·, t)∥C0([0,T ];H1(Ω)) ≲ ∥u∥W 2,1
2 (QT ) , ∀u ∈ C∞(QT ).

A density argument shows this estimate also hold in W 2,1
2 (QT ), which shows the case

when k = 1. Now, for k ≥ 2, by what has been proven

max
t∈[0,T ]

∥u(·, t)∥H1(Ω) ≲ ∥u∥W 2,1
2 (QT ) .

But for ∂xu ∈W 2,1
2 (QT ), we still have the above estimate. What’s more, we have

max
t∈[0,T ]

∥∂α
x u(·, t)∥H1(Ω) ≲ ∥∂α

x u∥W 2,1
2 (QT ) , |α|+ 2 ≤ 2k,

which exhibits that
max
t∈[0,T ]

∥u∥H2k−1(Ω) ≲ ∥u∥W 2k,k
2 (QT ) .

Dirichlet Initial Boundary Value Problem
We consider the following equation

(DIBV P )


∂u
∂t

+Au = f(x, t), on QT ,

u(x, 0) = ϕ(x), x ∈ Ω,

u = 0, on ST ,

where M = ∂
∂t

+A is strictly parabolic.
Our central issue is the existence and uniqueness of the solution to (DIBVP). To this

end, we further assume that aij , bi, c ∈ L∞(QT ), f ∈ L2(QT ) and ϕ ∈ L2(Ω).

Definition 5.2. We say u(x, t) is a weak solution to (DIBVP) if

• u ∈
o

W
1,1

2 (QT ) and u(·, t) t→0+−→ ϕ(·) in L2(Ω);

• For all v ∈
o

W
1,1

2 (QT ), we have∫
QT

[utv + aijuivj + biuuv + cuv] =

∫
QT

fv.
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Remark: The above integral equation is equivalent to that, for any t̄ ∈ [0, T ]∫
Qt̄

[utv + aijuivj + biuiv + cuv] =

∫
Qt̄

fv, v ∈
o

W
1,1

2 (QT ).

To see this, we take ηk a sequence of functions in C∞([0, T ]) such that ηk ≡ 0 on [t̄, T ],
0 ≤ ηk ≤ 1 and ηk(t)

k→∞−→ 1, for all t ∈ [0, t̄). Now, replacing v by vηk and a simple
application of L.D.C.T. will show this fact.
Energy Estimate (A priori estimate)

Taking v = u, we have∫
QT

utu+ aijuiuj + biuiu+ cu2 =

∫
QT

fu, 

We claim that ∫
QT

utu =
1

2

(∫
Ω

u2(·, t̄)−
∫
Ω

ϕ2

)
,

which is clear to see when u is smooth. For general u ∈
o

W
1,1

2 (QT ), recalling its definition, we
may choose a sequence uk in C∞(QT ) such that uk vanishes near ST and uk converges to u
in the ambient space. Using the norms, we know the integrals also converges.

Returning to , we have

1

2

∫
Ω

u2(·, t̄)− 1

2

∫
Ω

ϕ2 + λ0

∫
Qt̄

|∇xu|2 ≤
∫
QT

(
fu− biuiu− cu2

)
≤
∫
Qt̄

f2 + u2

2
+

∫
Qt̄

ϵ|∇xu|2 +
1

4ϵ

∫
Qt̄

u2 |⃗b|2 + ∥c∥L∞(QT )

∫
QT

u2.

Take ϵ = λ0/2, we have

1

2

∫
Ω

u2(x, t̄)dx +
λ0

2

∫
Qt̄

|∇xu(x, t)|2dxdt ≤ 1

2

∫
Ω

ϕ2(x)dx + C

∫
QT

u2(x, t) + f2(x, t)dxdt,

which shows that

max
t∈[0,T ]

∫
Ω

u2(x, t)dx+λ0

∫
QT

|∇xu(x, t)|2dxdt ≲L

∫
Ω

ϕ2(x)dx+

∫
QT

u2(x, t)+ f2(x, t)dxdt, 

We would like to call
max
t∈[0,T ]

∫
Ω

u2(x, t)dx

mathematical energy, and
λ0

∫
QT

|∇xu(x, t)|2dxdt

interfacial energy.
We have a further result: For t ∈ [0, T ], if we set g(t) =

∫
Qt
u2(x, t)dxdt, then we have

that g ∈ AC([0, T ]), g(0) = 0 and

g′(t) ≤ Cg(t) +

∫
Ω

ϕ2 + C

∫
QT

f2 ≤ Cg(t) +R, t− a.e.

77



Therefore, we have
(e−Ctg(t))′ = Re−Ct,

which shows that
g(t) ≤ 1

C
(eCt − 1)R.

Inserting this into , we obtain

max
t∈[0,T ]

∫
Ω

u2(x, t)dxdt+
∫
QT

|∇xu(x, t)|2dxdt ≤ 2eCT

(∫
Ω

ϕ2(x)dx + C

∫
QT

f2(x, t)dxdt
)
.

Theorem 5.1.4. Uniqueness of Solutions With the above energy estimate, we know that
there is at most one weak solution to (DIBVP).

Existence: Galerkin Method
Special Case: Eigen-expansion method. Consider

ut −∆u = 0, on Ω× (0,∞),

u = 0, on ∂Ω,

u(x, 0) = ϕ(x).

To solve this problem, we set u(x, t) = X(x)T (t), and obtain

T ′(t)

T (t)
=

∆X(x)
X(x) = −λ, t > 0,x ∈ Ω,

which reduces the original problem to an eigenvalue problem.
Let L be autonomous (independent of time t), and bi’s are 0, that is, Lu = −(aij(x)ui)j+

c(x)u. Suppose L is strictly elliptic on the domain, and aij , c are bounded. Now, we set
Mu = ∂u

∂t
+Lu, with L defined above, in the parabolic domain QT = Ω× (0, T ). We consider

the following problem

(IBV P )


Mu = f(x, t) ∈ L2(QT ), (x, t) ∈ QT ,

u = 0, on ST ,

u(x, 0) = ϕ(x) ∈ L2(Ω), x ∈ Ω.

Definition 5.3. We say u is a weak solution of (IBVP) if

• u ∈
o

W
1,1

2 (QT );

• For every v ∈
o

W
1,1

2 (QT ), we have∫ T

0

∫
Ω

[utv + aijuivj + cuv] =

∫ T

0

∫
Ω

fv.

Consider

(EP )

Lu = λu, in Ω,

u = 0, on ∂Ω.
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According to previous results, we know it admits a sequence of eigenvalues

λ1 < λ2 ≤ λ3 ≤ · · · −→ ∞,

with corresponding eigenfunctions

e1(x) > 0, e2(x), · · ·

where ∥ek∥L2(Ω) = 1, and ek ⊥L2&H1
0
el for k ̸= l. The inner product on H1

0 (Ω) is redefined as

((u, v)) =

∫
Ω

aijuivj +
(
c(x) + ∥c∥L∞(Ω)

)
uv.

Fix t ∈ [0, T ], we write u(x, t) =
∑∞

k=1 ck(t)ek(x), and similarly f(x, t) =
∑∞

k=1 dk(t)ek(x).
Now, by the equation, we can formally write

∞∑
k=1

(c′k(t) + λkck(t)) ek(x) =
∞∑
k=1

dk(t)ek(x),

which gives c′k(t) + λkck(t) = dk(t), t ∈ [0, T ],

ck(0) = (ϕ, ek)L2(Ω).

Observe that λk > λ1 > 0, k ≥ 2, we have

ck(t) = e−λkt(ϕ, ek)L2(Ω) +

∫ t

0

e−λk(t−s)dk(s)ds.

Theorem 5.1.5. Existence of Solution Suppose f ∈ L2(QT ) and ϕ ∈ H1
0 (Ω). Then

∞∑
k=1

ck(t)ek(x) =: u

converges in
o

W
1,1

2 (QT ). Then u is a weak solution of (IBVP). Moreover, u ∈ C0([0, T ];H1
0 (Ω)),

and
u(·, t) t→0−→ ϕ(·)

in H1
0 (Ω).

证明. We will show this result in three steps.

Step 1: Because f ∈ L2(QT ), we have f(·, t) ∈ L2(Ω) for almost every t ∈ [0, T ]. By expansion,
we have

f(·, t) =
∞∑
k=1

dk(t)ek(x)

in L2(Ω), where dk(t) = (f(·, t), ek)L2(Ω). To each m ≥ 1, we set

fm(x, t) =
m∑

k=1

dk(t)ek(x), (x, t) ∈ QT .
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Then
∥fm − f∥2L2(QT ) =

∫ T

0

∫
Ω

|fm − f |2,

but ∫
Ω

|fm(x, t)− f(x, t)|2dx ≤
∫
Ω

2f2
m(x, t) + 2f2(x, t)dx

≤
∫
Ω

4f2(x, t)dx ∈ L1(0, T ),

we then may apply L.D.C.T., and find that fm converges to f in L2(QT ) as m→ ∞.

Step 2: Since f ∈ L2(QT ), dk ∈ L2(0, T ), we know

ck(t) = e−λkt(ϕ, ek)L2(Ω) +

∫ t

0

e−λk(t−s)dk(s)ds

is absolutely continuous on [0, T ], and c′k ∈ L2(0, T ) exists in both a.e. − classical &
weak cases.

Define um(x, t) =
∑m

k=1 ck(t)ek(x) ∈
o

W
1,1

2 (QT ) the truncated version of u. Then we
claim that um is a weak solution of

Mum = fm(x, t), (x, t) ∈ QT ,

um = 0, on ST ,

um(x, 0) = ϕm(x) =
∑m

k=1(ϕ, ek)L2(Ω)ek(x).

Observe that for almost every t ∈ (0, T ), um(·, t) ∈ H1
0 (Ω), we have

Lum
H−1

=
m∑

k=1

ck(t)λkek(x) (Lek
H−1

= λkek)

=
m∑

k=1

(dk(t)− c′k(t)) ek(x)

= fm(x, t)− ∂um(x, t)
∂t

, x ∈ Ω.

Now, applying a general v ∈
o

W
1,1

2 (QT ) on both sides, we have (because for almost all t,
v ∈ H1

0 (Ω), we have I.B.P.)∫
Ω

[aij(x)(um)ivj + c(x)umv] (x, t)dx =

∫
Ω

(
fm(x, t)− ∂um(x, t)

∂t

)
v(x, t)dx.

Thus, an integration over (0, T ) gives that um satisfies the PDE in the weak sense. As
for the initial value, we have

∥um(·, t)− ϕ(·)∥L2(Ω) ≤
m∑

k=1

∣∣ck(t)− (ϕ, ek)L2(Ω)

∣∣ ,
where RHS clearly converges to 0 as t→ 0, which proves the claim.
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Step 3: By energy estimates applied to um, we have

max
t∈[0,T ]

∫
Ω

u2m(x, t)dx +

∫
QT

|∇um(x, t)|dxdt ≲ ∥fm∥2L2(QT ) + ∥ϕm∥2L2(QT ) .

How about ∂um

∂t
? Recalling for almost every t ∈ (0, T ), we have Lum

H−1

= fm(x, t)− ∂um(x,t)
∂t

,

um
∣∣
∂Ω

= 0.

Applying v = ∂um

∂t
∈ H1

0 (Ω), we have∫
Ω

[
aij(um)i

(
∂um
∂t

)
j

+ cum
∂um
∂t

]
=

∫
Ω

fm
∂um
∂t

−
∫
Ω

(
∂um
∂t

)2

.

Observing that
(
∂um

∂t

)
j
=
∑m

k=1 c
′
k(ek)j , we then have

LHS =
d

dt

∫
Ω

1

2
(aij)(um)i(um)j + cu2m,

which implies that

1

2

∫
Ω

aij(um)i(um)j+cu
2
m−1

2

∫
Ω

aij(ϕm)i(ϕm)j+cϕ
2
m ≤ 1

2

∫ T

0

∫
Ω

f2
m−1

2

∫ T

0

∫
Ω

(
∂um
∂t

)2

.

Rearranging the terms, and using strict ellipticity, we have∫ T

0

∫
Ω

(
∂um
∂t

)2

+ λ0

∫
Ω

|∇um|2 ≤ ∥c∥L∞(Ω)

∫
Ω

u2m(x, t)dx +

∫ T

0

∫
Ω

f2
m(x, t)dxdt

+ C(∥aij∥L∞(Ω) ∥c∥L∞(Ω))

∫
Ω

(|∇ϕm|2 + |ϕm|2)(x, t)dxdt.

Combining this with energy estimate, we obtain

∥um∥2o
W

1,1

2 (QT )
≲ ∥fm∥L2(QT ) + ∥ϕm∥H1(Ω) .

Because L is linear, we may replace um by um − ul, and fm, ϕm by fm − fl, ϕm − ϕl

respectively, which shows um is Cauchy in
o

W
1,1

2 (QT ) and C0([0, T ];H1
0 (Ω)). Because

these two spaces are Banach, we know um converges to some u in these spaces as m→ ∞.
Using the estimates, one can show that u is a weak solution to the original PDE and
B.C.. The initial condition is also satisfied:

∥u(·, t)− ϕ(·)∥H1
0 (Ω) ≤ ∥u(·, t)− um(·, t)∥H1

0 (Ω)+∥ϕ(·)− um(·, t)∥H1
0 (Ω)+∥ϕ− ϕm∥H1

0 (Ω) , 

Using energy estimate, and that ϕm converges to ϕ in H1
0 (Ω), we know for any ϵ > 0,

there corresponds an M > 0 such that for any m > M , we have

∥u(·, t)− um(·, t)∥H1
0 (Ω) + ∥ϕ− ϕm∥H1

0 (Ω) < ϵ,

and hence
lim sup

t→0
LHS of  ≤ ϵ.
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Theorem 5.1.6. Existence Theorem (Full-version) Consider (IBVP). If f ∈ L2(QT )

and ϕ ∈ H1
0 (Ω), then (IBVP) has a weak solution

u ∈
o

W
1,1

2 (QT ) ∩ C0([0, T ];H1
0 (Ω)),

and
u(·, t) t→0−→ ϕ(·), in H1

0 (Ω).

Moreover, we have the estimate

max
t∈[0,T ]

∥u(·, t)∥H1
0 (Ω) + ∥u∥W 1,1

2 (QT ) ≲ ∥ϕ∥H1
0 (Ω) + ∥f∥L2(QT ) .

One should also notice that this theorem requires no smoothness on ∂Ω.

W 2,1
2 (QT )-regularity

Theorem 5.1.7. Suppose aij ∈ C1(Ω̄), c ∈ L∞(Ω),ϕ ∈ H1
0 (Ω), ∂Ω ∈ C2 and L strictly

elliptic on Ω. Then the weak solution u ∈W 2,1
2 (QT ), and

∥u∥W 2,1
2 (QT ) ≲ ∥ϕ∥H1

0 (Ω) + ∥f∥L2(QT ) .

证明. Recall um(x, t) =
∑m

k=1 ck(t)ek(x), and fm(x, t) =
∑m

k=1 dk(t)ek(x). We may write
ck(t) = e−λkt(ϕ, ek)L2(Ω) +

∫ t

0
e−λk(t−s)dk(s)ds. Also recall that for almost every t, um is a

weak solution of Lum(x, t) = fm(x, t)− ∂um(x,t)
∂t

, on Ω,

um(x, t) = 0, on ∂Ω,

in the sense of H−1(Ω). By elliptic H2-estimates, we know that um(·, t) ∈ H2(Ω), and

∥um(·, t)∥H2(Ω) ≲ ∥fm(·, t)∥L2(Ω) +

∥∥∥∥um(·, t)
∂t

∥∥∥∥
L2(Ω)

+ ∥um(·, t)∥L2(Ω) ,

which is equivalent to

∥um(·, t)∥2H2(Ω) ≲ ∥fm(·, t)∥2L2(Ω) +

∥∥∥∥um(·, t)
∂t

∥∥∥∥2
L2(Ω)

+ ∥um(·, t)∥2L2(Ω) ,

and so by energy estimate∫ T

0

LHSdt ≲ ∥fm∥2L2(QT ) +

∥∥∥∥um(·, t)
∂t

∥∥∥∥2
L2(QT )

+ ∥um∥2L2(QT )

≲ ∥fm∥2L2(QT ) + ∥ϕm∥2H1
0 (QT ) .

Therefore, we have the estimate

∥um∥2W 2,1
2 (Qt)

≲ ∥ϕm∥2H1
0 (Ω) + ∥fm∥2L2(QT ) .

The above estimate still holds when um is replaced by um−ul and fm, ϕm by fm−fl, ϕm−ϕl

respectively. Thus um becomes a Cauchy sequence in W 2,1
2 (QT ) and converges to some u∞

in this space. According to Imbedding Theorem, we know that u∞ = u.
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Higher Order Regularity and Compatibility Condition: Assume aij ∈ C1(Ω̄), c ∈
L∞(Ω), ∂Ω ∈ C2, and f ∈W 2,1

2 (QT ) ↪→ C0([0, T ];H1(Ω)). We claim that dk ∈ H1(0, T ), and
d′k(t) =

∫
Ω

∂f(x,t)
∂t

ek(x)dx for almost every t. To see this, we recall that C∞(QT ) is dense in
W 2,1

2 (QT ) (Because the boundary is smooth), there is a sequence of functions fm in the prior
space that converges to f in W 2,1

2 (QT ). Let

dm,k(t) =

∫
Ω

fm(x, t)ek(x)dx,

we know that dm,k ∈ C∞([0, T ]), and thus d′m,k(t) =
∫
Ω

∂fm(x,t)
∂t

ek(x)dx. We now evaluate∫ T

0

(dm,k(t)−dk(t))2dt+
∫ T

0

(
d′m,k(t)−

∫
Ω

∂f(x, t)
∂t

ek(x)dx
)2

dt ≤
∫
QT

(fm−f)2+
∫
QT

(
∂fm
∂t

− ∂f

∂t

)2

,

and because RHS converges to 0 as m→ ∞, we have proven the claim.
On the other hand, we recall that

ck(t) = e−λkt(ϕ, ek)L2(Ω) +

∫ t

0

e−λk(t−s)dk(s)ds,

we know that ck ∈ C1([0, T ]), and c′k(t) = dk(t)− λkck(t) ∈ AC[0, T ]. Thus c′′k = d′k − λkc
′
k ∈

L2(0, T ), which shows that

∂um(x, t)
∂t

=
m∑

k=1

c′k(t)ek(x) ∈W 2,1
2 (QT ) ∩

o

W
1,1

2 (QT ).

The above needs the fact that each ek ∈ H2(Ω). Observing also that

∂fm(x, t)
∂t

=
m∑

k=1

d′k(t)ek(x) ∈ L2(QT ),

we may rewrite the PDE ∂um

∂t
+ Lum = fm as

m∑
k=1

(c′k + λkck)ek + Lum = fm =
m∑

k=1

dk(t)ek(x).

Differentiating both sides, we obtain a new equation ∂
∂t

(
∂um

∂t

)
+ L∂um

∂t
= ∂fm

∂t
∈ L2(QT ), a.e. in QT ,

∂um

∂t
= 0, on ST , because of .

It is more interesting to talk about its initial condition

∂um
∂t

∣∣∣∣
t=0

=
m∑

k=1

c′k(0)ek

=
m∑

k=1

(dk(0)− λkck(0))ek

= fm − Lϕm

= (f(·, 0)− Lϕ)m , m ≥ 1.
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Led by previous results, we need to add a new condition (Compatibility Condition):

f(·, t)− Lϕ ∈ H1
0 (Ω).

Therefore, we can safely apply W 2,1
2 -regularity theorem, and obtain the estimate∥∥∥∥∂um∂t

∥∥∥∥
W 2,1

2 (QT )

≲
∥∥∥∥∂fm∂t

∥∥∥∥
L2(QT )

+ ∥(f(·, 0)− Lϕ)m∥
H1

0 (Ω)
.

We claim that ∂fm
∂t

converges to ∂f
∂t

in L2(QT ) as m→ ∞. First observe that

∂fm
∂t

=
m∑

k=1

d′k(t)ek(x) =
m∑

k=1

∫
Ω

∂f

∂t
(x, t)ek(x)dxek(x).

Because ∂f
∂t

∈ L2(QT ), for almost all t, ∂f
∂t
(·, t) ∈ L2(Ω), we then may write in the sense of

L2(Ω)

∂f

∂t
(x, t) =

∞∑
k=1

(
∂f

∂t
(·, t), ek

)
L2(Ω)

ek(x),

which clearly shows that for fixed proper t, ∂fm
∂t

(·, t) converges to ∂f
∂t
(·, t) in L2(Ω) as m→ ∞.

But we also have the estimate∫
Ω

∣∣∣∣∂fm∂t (x, t)− ∂f

∂t
(x, t)

∣∣∣∣2 dx ≤ 4

∫
Ω

∣∣∣∣∂f∂t (x, t)
∣∣∣∣2 dx ∈ L1(0, T ),

and so an application of L.D.C.T. shows the convergence.
By , we know that ∂um

∂t
is Cauchy in W 2,1

2 (QT ) ↪→ L2(QT ). It must converge to some
function v∞ in W 2,1

2 (QT ), but we already know that um converges to u in W 2,1
2 (QT ), and so

v∞ = ∂u
∂t

. Therefore, we have ∂u
∂t

∈W 2,1
2 (QT ), and∥∥∥∥∂u∂t

∥∥∥∥
W 2,1

2 (QT )

≲
∥∥∥∥∂f∂t

∥∥∥∥
L2(QT )

+ ∥f(·, 0)− Lϕ∥H1
0 (Ω) .

To estimate the remaining terms ∂α
x u, with |α| = 4, we recall for almost all t we haveLum = fm − ∂um

∂t
∈ H2(Ω), a.e. on Ω,

um = 0, on ∂Ω.

Assuming ∂Ω ∈ C4, aij ∈ C3(Ω̄), c ∈ C2(Ω̄), and by higher order elliptic theory, we have

∥um(·, t)∥2H4(Ω) ≲ ∥fm(·, t)∥2H2(Ω) +

∥∥∥∥∂um(·, t)
∂t

∥∥∥∥2
H2(Ω)

+ ∥um(·, t)∥2L2(Ω) .

Integrating this inequality over (0, T ), we obtain∫ T

0

∥um(·, t)∥2H4(Ω) dt ≲
∫
QT

|fm|2 +
∫
QT

∣∣∣∣∂um∂t
∣∣∣∣2 + ∫

QT

|um|2,

and so after taking m→ ∞, we have∫ T

0

∥u(·, t)∥2H4(Ω) dt ≲
∫
QT

|f |2 +
∫
QT

∣∣∣∣∂u∂t
∣∣∣∣2 + ∫

QT

|u|2.
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Combining this estimate,  and W 2,1
2 -estimate of u, we know that

∥u∥W 4,2
2 (QT ) ≲ ∥f∥W 2,1

2 (QT ) + ∥Lϕ− f(·, 0)∥H1
0
+ ∥ϕ∥H1

0 (Ω)

≲ ∥f∥W 2,1
2 (QT ) + ∥ϕ∥H3(Ω) ,

where ϕ ∈ H3(Ω) is an implicit requirement, because Lϕ ∈ H1
0 (Ω) and Tϕ = 0 imply that

ϕ ∈ H3(Ω). Higher order regularity is obtained similarly by differentiating the PDE w.r.t. t
formally.

Theorem 5.1.8. Higher Order Regularity (Full-version) Let m ≥ 0. Suppose ∂Ω ∈
C2m+2, aij ∈ C2m+1(Ω̄), c ∈ C2m(Ω̄), f ∈ W 2m,m

2 (QT ). We further assume compatibility
condition:

f(·, 0)− Lϕ =: ϕ1 ∈ H1
0 (Ω),

∂f

∂t
− Lϕ1 =: ϕ2 ∈ H1

0 (Ω),

...
∂m−1f

∂m−1t
− Lϕm−1 =: ϕm ∈ H1

0 (Ω).

( =⇒ ϕ ∈ H2m+1(Ω)). Then, we have

∥u∥W 2m+2,m+1
2 (QT ) ≲ ∥f∥W 2m,m

2 (QT ) + ∥ϕ∥H2m+1(Ω) .

Theorem 5.1.9. Imbedding Theorem(Ladynskaya, Uracera & Solonikov)

W 2l,l
p (QT ) ↪→ Cα,α2 (QT ), 0 < α < 2l − n+ 2

p
, 1 < p <∞, l ≥ 1.

Special Case: When 0 < α < 1, then

∥u∥
Cα, α

2 (QT )
= sup

(x,t)̸=(y,s)

|u(x, t)− u(y, s)|
|x − y|α + |t− s|α/2

+ max
QT

|u|.

Corollary 5.1.1. Suppose everything is C∞-smooth and compatibility holds at all orders, we
have the solution u ∈ C∞(QT ).

Remark:

1. Suppose ∂Ω, L, f satisfies corresponding smoothness conditions, and u is a W 1,1
2 (QT )

weak solution of ∂u
∂t

+ Lu = f in QT . Then for all Q′
T ⊂⊂ parabolic interior of QT , we

have u ∈W 2m+2,m+1
2 (Q′

T ) and

∥u∥W 2m+2,m+1
2 (Q′

T ) ≲ ∥f∥W 2m,m
2 (QT ) + ∥u∥L2(QT ) ;

2. (Smoothing Effect of Parabolic Equations) Suppose ∂Ω, L, f satisfies corresponding

smoothness conditions, and u is a
o

W
1,1

2 (QT ) weak solution of ∂u
∂t

+ Lu = f in QT

and u
∣∣
ST

= 0. Then for any δ > 0, u ∈W 2m+2,m+1
2 (Ω× (δ, T )), and

∥u∥W 2m+2,m+1
2 (Ω×(δ,T )) ≲ ∥f∥W 2m,m

2 (QT ) + ∥u∥L2(QT ) .
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5.2 Schauder and Lp Theory

Schauder Theory
Consider Mu = ∂u

∂t
− aij(x, t)uij + bi(x, t)ui + c(x, t)u for x ∈ Ω ⊂⊂ Rn, t > 0, and

(DIBV P )


Mu = f(x, t), (x, t) ∈ QT ,

u = 0, on ST = ∂Ω× (0, T ),

u(x, 0) = ϕ(x), x ∈ Ω.

For P,Q ∈ QT , we define parabolic distance

d(P,Q) =
(
|x − y|2 + |t− s|

)1/2
, P = (x, t), Q = (y, s).

Define for 0 < l < 1

Cl, l
2 (QT ) =

{
u ∈ C0(QT ); sup

P,Q∈QT , P ̸=Q

|u(P )− u(Q)|
d(P,Q)l

=: [u]l, l
2 ;QT

<∞

}
.

Then Cl, l
2 (QT ) is Banach, with norm ∥u∥

Cl, l
2 (QT )

= ∥u∥L∞(QT ) + [u]l, l
2 ;QT

. Furthermore, we
define for k ≥ 0,

C2k+l,k+ l
2 (QT ) =

{
u ∈ C2k,k(QT ); ∂

α
x ∂

β
t u ∈ Cl, l

2 (QT ), |α|+ 2β = 2k.
}
,

which is Banach with norm

∥u∥
C2k+l,k+ l

2 (QT )
= ∥u∥C2k,k(QT ) +

∑
|α|+2β=2k

[
∂α

x ∂
β
t u
]
l, l

2 ;QT

.

Theorem 5.2.1. Embedding Theorem Suppose ∂Ω ∈ C1, if 2k − n+2
p
> 0, then

W 2k,k
p (QT ) ↪→ C2k−n+2

p ,k−n+2
2p (QT ),

provided 2k − n+2
p

is not an integer. (If it is, then it may be replaced by any λ < 2k − n+2
p

.)

Compatibility Condition: For k ≥ 0, let

u(k)(x) = ∂ku(x, t)
∂tk

∣∣∣∣
t=0

,

then one may write it as the combination of f, ϕ and the PDE:

u(0)(x) = ϕ(x)

u(1)(x) = ∂u

∂t
(x, 0) = f(x, 0)− Lϕ(x)

u(2)(x) = ∂2u

∂t2
(x, 0) = ft(x, 0) +

∂aij
∂t

(x, 0)ϕij −
∂bi
∂t

(x, 0)ϕi −
∂c

∂t
(x, 0)ϕ

...
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Theorem 5.2.2. Let l > 0, [l] = 2k, k ≥ 0 and l nonintegral. Suppose ∂Ω ∈ C2+l,
aij , bi, c ∈ Cl, l

2 (QT ), f ∈ Cl, l
2 (QT ) and ϕ ∈ C2+l(Ω̄). Then (DIBVP) has a unique solu-

tion u ∈ C2+l,1+ l
2 (QT ), and

∥u∥
C2+l,1+ l

2 (QT )
≲ ∥f∥

Cl, l
2 (QT )

+ ∥ϕ∥C2+l(Ω̄) ,

provided the compatibility condition holds up to order 1 + [l/2]: u(j)(x) = 0 for x ∈ ∂Ω, and
j = 0, 1, · · · , 1 + [l/2].

In the case of Robin/Neumann B.C.: βi(x, t)ui(x, t) + β(x, t)u(x, t) = 0 for (x, t) ∈ ST ,
where (β1, · · · , βn) is a outward pointing vector field on ∂Ω. The corresponding compatibility
condition becomes

∂k

∂tk
(βi(x, t)ui(x, t) + β(x, t)u(x, t))

∣∣∣∣
t=0

= ( in terms of ϕ) = 0, ∀x ∈ ∂Ω.

Theorem 5.2.3. Assume all conditions in previous theorem, βi, β ∈ Cl+1, l+1
2 (∂Ω × [0, T ]).

Then (R/NIBVP) has a unique solution u ∈ C2+l,1+ l
2 (QT ), and

∥u∥
C2+l,1+ l

2 (QT )
≲ ∥f∥

Cl, l
2 (QT )

+ ∥ϕ∥C2+l(Ω̄) ,

provided the compatibility condition holds up to order [(l + 1)/2].

Theorem 5.2.4. Schauder Interior Estimate Let 0 < l < 1, qij , bi, c, f ∈ Cl, l
2 (QT ). If

u ∈ C2+l,1+ l
2 (QT ) is a solution of Mu = f(x, t), (x, t) ∈ QT . Then for Q′ ⊂ QT closed in

Rn, and Q′∩ parabolic boundary Γ = ∅. Then,

∥u∥
C2+l,1+ l

2 (Q′)
≲n,l,QT ,Q′,L ∥f∥

Cl, l
2 (QT )

+ ∥u∥L∞(QT ) .

Theorem 5.2.5. Boundary Estimate Assume all conditions in previous result, and more:
∂Ω ∈ C2+l, u ∈ C2+l,1+ l

2 (QT ) satisfies
PDE in QT ,

u = 0 on ST ,

No I.C.

Then, for all ϵ > 0, we have

∥u∥
C2+l,1+ l

2 (Ω̄×[ϵ,T ])
≲n,l,QT ,ϵ,L ∥f∥

Cl, l
2 (QT )

+ ∥u∥L∞(QT ) .

The boundary condition can also be replaced by R/N without harming the result.

Lp-theory
Let 1 < p < ∞, aij ∈ C0(QT ), bi, c ∈ L∞(QT ), ∂Ω ∈ C2. We consider (DIBVP) with

ϕ ∈W 1,p(Ω).

Definition 5.4. We say u is a strong solution of (DIBVP) if
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• u ∈W 2,1
p (QT ) and satisfies the PDE a.e. in QT ;

• u ∈W 2,1
p (QT ) ⊂W 1,1

p (QT ) =W 1,p(QT ), and u
∣∣
ST

= 0 in the sense of trace;

• (u− ϕ)
∣∣
Ω×{0} = 0 in the sense of trace.

Theorem 5.2.6. Existence & Uniqueness Suppose 1 < p < ∞, p ̸= 3/2, then for all
f ∈ Lp(QT ), ϕ ∈ W 2,p(Ω) satisfying for the case of p > 3/2 the compatibility condition
ϕ
∣∣
∂Ω

= 0. Then, (DIBVP) has a unique solution u ∈W 2,1
p (QT ), and

∥u∥W 2,1
p (QT ) ≲ ∥f∥Lp(QT ) + ∥ϕ∥W 2,p(Ω) .

When p = 3/2, see Ladynzenskaya, P342.

Theorem 5.2.7. Interior Estimate Let 1 < p < ∞, suppose u ∈ W 2,1
p (QT ) is a strong

solution of PDE. Then for all Q′ closed in QT , QT ∩ Γ = ∅. Then

∥u∥W 2,1
p (Q′) ≲n,p,L,Q′,QT

∥f∥Lp(QT ) + ∥u∥Lp(QT ) .

Theorem 5.2.8. Boundary Estimate Let ∂Ω ∈ C2, u ∈ W 2,1
p (QT ), satisfying PDE and

Dirichlet B.C., then

∥u∥W 2,1
p (Ω̄×[ϵ,T ]) ≲n,p,L,ϵ,QT

∥f∥Lp(QT ) + ∥u∥Lp(QT ) .

For R/N B.C., see Garoni & Solonikov, Communication in PDE, Vol 9. 1323-1372(1984).

Theorem 5.2.9. R/NIBVP Let aij ∈ C0(QT ), bi, c ∈ L∞(QT ), βi, β ∈ C1, ∂Ω ∈ C2,
1 < p < ∞, p ̸= 3. Then for all f ∈ Lp(QT ), ϕ ∈ W 2,p(Ω) satisfying compatibility condition
for the case p > 3

βi(x, 0)ϕi(x) + β(x, 0)ϕ(x) = 0, on ∂Ω.

Then (R/NIBVP) has a unique solution u ∈W 2,1
p (QT ), and

∥u∥W 2,1
p (QT ) ≲n,p,L,QT ,βi,β ∥f∥Lp(QT ) + ∥ϕ∥W 2,p(Ω) .

5.3 Existence and Uniqueness of Nonlinear Heat Equa-
tion

Let Ω be bounded, ∂Ω ∈ C2+α, 0 < α < 1. We consider the following problem

(DIBV P )


ut − k∆u = f(x, t, u), x ∈ Ω, t > 0,

u = 0, on ST ,

u(x, 0) = ϕ(x), x ∈ Ω.

Assume f satisfies:

• For each fixed u ∈ R, fu(x, t) is measurable;
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• For any bounded B ⊂ Ω̄× [0,∞)× R, there is a constant M(B) > 0 such that

|f(x, t, u)| ≤M(B), ∀(x, t, u) ∈ B,

and
|f(x, t, u)− f(x, t, v)| ≤M(B)|u− v|, (x, t, u), (x, t, v) ∈ B.

Theorem 5.3.1. For any ϕ ∈ L∞(Ω), there is Tϕ ∈ (0,∞] such that (DIBVP) has a unique
solution u, satisfying

• For small ϵ > 0, u ∈ W 2,1
p (Ω × (ϵ, Tϕ − ϵ)), for 1 < p < ∞, and the PDE holds a.e. on

Ω× (0, Tϕ);

• The map t ∈ [0, Tϕ − ϵ] 7→ u(·, t) ∈ L∞(Ω) is bounded;

• If Tϕ <∞, then
lim

t→T−
ϕ

∥u(·, t)∥L∞(Ω) = ∞;

• B.C. holds in the classical sense if t > 0;

• I.C. holds in teh sense

lim
t→0+

∥u(·, t)− ϕ(·)∥Lp(Ω) = 0, 1 < p <∞.

If Lipschitz condition is strengthened as

|f(x, t, u)− f(y, s, v)| ≤M(B)(|x − y|α + |t− s|α/2 + |u− v|),

then
u ∈ C2+α,1+α

2 (Ω̄× [ϵ, Tϕ − ϵ]).

Furthermore, if ϕ ∈ C2+α(Ω̄) and ϕ
∣∣
∂Ω

= 0, k∆ϕ(x) + f(x, 0, ϕ(x)) = 0 for x ∈ ∂Ω,then
u ∈ C2+α(Ω̄× [0, Tϕ − ϵ]).
Remark:

1. If f ∈ C∞(Ω̄× (0,∞)× R), ∂Ω ∈ C∞, then u ∈ C∞(Ω̄× (0, Tϕ));

2. If f(x, t, 0) = 0, then ϕ ≥ 0 implies u ≥ 0. See “Global Solutions of Reaction-Diffusion
Systems” by Rothe;

3. B.C. can be replaced by
k
∂u

∂γ
+ β(x)u = 0

on ∂Ω for t > 0, and β ≥ 0, β ∈ C1+α(∂Ω), γ unit outer normal of ∂Ω. Then the
corresponding compatibility condition is

k
∂ϕ

∂γ
+ β(x)ϕ = 0

on ∂Ω.
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Example: 
ut −∆u = |u|p−1u, x ∈ Ω, t > 0, 1 < p <∞,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = ϕ(x), ϕ(x) ≥ 0, ϕ ̸≡ 0,x ∈ Ω,

(5.3.1)

where ∂Ω ∈ C2+α, ϕ ∈ L∞(Ω). By previous theorem, there is a Tϕ > 0 such that (5.3.1) has a
unique nonnegative solution u ∈ C2+α,1+α

2 (Ω̄× [ϵ, Tϕ − ϵ]). Is Tϕ <∞? The answer is “Yes”,
when ϕ is very large.
(Kaplan’s Eigenfunction Method) Let e1(x) > 0 be the principal eigenfunction, and apply
this to the equation, we have

d

dt

∫
Ω

u(x, t)e1(x)dx −
∫
Ω

∆u(x, t)e1(x)dx =

∫
Ω

up(x, t)e1(x)dx,

and then by I.B.P.

d

dt

∫
Ω

u(x, t)e1(x)dx + λ1

∫
Ω

u(x, t)e1(x)dx =

∫
Ω

up(x, t)e1(x)dx

≥
(∫

Ω

u(x, t)dµ(x)
)p

=

(∫
Ω

u(x, t)e1(x)dx
)p

.

Thus, we obtain an ordinary differential inequalityh′(t) + λ1h(t) ≥ hp(t), t > 0,

h(0, t) =
∫
Ω
ϕ(x)e1(x)dx.

Observe that if
(∫

Ω
ϕ(x)e1(x)dx

)p − λ1

(∫
Ω
ϕ(x)e1(x)dx

)
> 0, then h′(t) > 0 for t > 0.

(Equivalently it requires that
∫
Ω
ϕe1 > λ

1
p−1 ). But

h′(t)

hp(t)− λ1h(t)
≥ 1,

and hence if Tϕ = ∞, we have ∫ t

0

h′(t)

hp(t)− λ1h(t)
dt ≥ t,

and

LHS =

∫ h(t)

h(0+)

dh

hp − λ1h
≥ t.

Observe that LHS is bounded, and hence we are done.
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Chapter 6

Conservation Law

Let u(x, t) be the density of substance at x and t, and f⃗(x, t, u) the flux of substance.
The equation we concern about is

ut +∇ · f⃗ = 0.

Special Case: x ∈ R, f = f(u) smooth and the equation becomesut + (f(u))x = 0, on R× R+,

u(x, 0) = g(x), x ∈ R.

(Method of Characteristics) Let

C :
dX

dt
= f ′(u(x, t))

be the curve of characteristics, then by chain rule

du(X(t), t)

dt
= ut + ux

dX

dt
= 0,

which implies that u is a constant on C. Then dX
dt

= f ′(M), and X = f ′(M)t + s. Recall
that u(x, t) = g(s) for (x, t) ∈ C, then u is given implicitly by

u = g(X − f ′(u)t).

Example: When f(u) = u2

2
, the equation becomes ut + uxu = 0,

u(x, 0) = g(x).

The curve of characteristics is X = g(s)t+ s, and u(x, t) = g(s).
Pathological Phenomenon: If there are s1 < s2 such that g(s1) > g(s2), then it is impos-
sible to have classical solutions existing for all t > 0. Something must blow up in finite time.
Suppose u = g(x− ut), we have

ux(x, t) = g′(x− ut)(1− ux(x, t)t),
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which implies

ux(x, t) =
g′(x− ut)

1 + tg′(x− ut)
=

g′(s)

1 + tg′(s)
.

Because g(s1) > g(s2), then there should be some s ∈ (s1, s2) such that g′(s) < 0. Then, as
t→+ − 1

g′(s)
, we have

ux(X(t), t) −→ −∞,

which is also called Steepening Phenomenon, or Shock Wave.
Consider the following problem

(IV P )

ut + (f(u))x = 0, x ∈ R, t > 0,

u(x, 0) = g(x).

Theorem 6.0.1. Let f ′′(u) > 0 be continuous, and g is increasing in x, g is bounded and
C1-smooth. Then (IVP) has a C1-smooth solution in R× (0,∞).

证明. Consider characteristic curve  dX
dt

= f ′(g(s)),

X(0) = s,

we have X = f ′(g(s))t + s. The idea is that for any (x, t), t > 0, we find a unique s ∈ R
such that there is a C.C. Cs passes through it. Define h(s) = f ′(g(s))t0 + s and because g is
bounded and f ′ continuous, f ′(g(s)) is bounded on R, which gives that lims→±∞ h(s) = ±∞.
Obviously h is continuous in s. By I.V.T., there should be some s0 ∈ R such that h(s0) = x.
Because h(s) is strictly increasing, such s0 is unique. Thus u(x0, t0) = g(s0) is well-defined
on the upper half plane. Define u(x0, 0) = g(x0).

To show u(x, t) ∈ C1, we check

f ′(g(s))t+ s− x =: F (x, t, s) = 0,

and observe

• F ∈ C1;

• F (x0, t0, s0) = 0;

• Fs(x0, t0, s0) = f ′′(g(s))t0g
′(s) + 1 ̸= 0.

By Implicit Function Theorem, there should be some neighborhood Nr(x0, t0) and function
s = s(x, t), for (x, t ∈ Nr) such that s ∈ C1(Nr), F (x, t, s(x, t)) = 0 on Nr and hence

st = −f ′(g(s(x, t)))sx.

Moreover, if F (x, t, s) = 0 with (x, t) ∈ Nr and s ≈ s0, then s = s(x, t), and so u(x, t) =

g(s(x, t)) for all (x, t) with t > 0. The PDE is automatically satisfied by using the above
equalities, and the boundary condition is fulfilled because

lim
t→0+

u(x, t) = lim
t→0+

g(s(x, t)) = g(x).
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Theorem 6.0.2. If all the other conditions are satisfied, but g is not increasing in x, then
(IVP) has no classical solution for all t > 0.

Moral of Story: Have to give up the hope for classical solution.
Weak Solutions
Discussion: Suppose u ∈ C1(R× R+) is a solution, then for all ϕ ∈ C∞

0 (R× R+), we have

0 =

∫ ∞

−∞

∫ ∞

0

(ut + (f(u))x)ϕdtdx

=

∫ ∞

−∞

∫ ∞

0

(uϕ)t + (f(u)ϕ)xdtdx−
∫ ∞

−∞

∫ ∞

0

uϕt + f(u)ϕx

=

∫
∂R2

+

(f(u)ϕ, uϕ) · n⃗ds−
∫ ∞

−∞

∫ ∞

0

uϕt + f(u)ϕx

= −
∫ ∞

−∞
g(x)ϕ(x, 0)dx−

∫ ∞

−∞

∫ ∞

0

uϕt + f(u)ϕx.

Definition 6.1. If u, f(u) ∈ L1
loc(R2

+) and the above equality holds for any ϕ ∈ C1
0 (R× R+).

Then we say u is a weak solution of (IVP).

An important necessary condition for weak solution of the PDE: Rankine-Hugoniat con-
dition: Let C : X(t) be a C1-smooth curve, and u a classical solution on each side of C.
ul(X(t), t) be the limit of u on left hand side of C on the curve, and ur(X(t), t) the right hand
side. Then, if u is a weak solution of PDE on Ω, we must have by Physics

d

dt

∫ b

a

u(x, t)dx+ f(u(b, t))− f(u(a, t)) = 0,

while

LHS =
d

dt

[∫ X(t)

a

+

∫ b

X(t)

]
+ f(u(b, t))− f(u(a, t))

= ul(X(t), t)X ′(t) +

∫ X(t)

a

ut(x, t)dx− ur(X(t), t)X ′(t) +

∫ b

X(t)

ut(x, t)dx+ f(u(b, t))− f(u(a, t))

= X ′(t)(ul − ur)−
∫ X(t)

a

(f(u))xdx−
∫ b

X(t)

(f(u))xdx+ f(u(b, t))− f(u(a, t))

= X ′(t)(ul − ur)− f(ul) + f(ur)

=: X ′(t)[u]− [f(u)]

which gives that X ′(t) = f(ul)−f(ur)
ul−ur

. “Soul” Proof.
Rigorous proof : Because u is a weak solution of PDE, then for all ϕ ∈ C1

0 (Ω), we have∫
Ω

(uϕt + f(u)ϕx)dxdt = 0,

with Ω a small neighborhood of the curve. Let Ωl and Ωr denote the two subdomains that
are split by the curve C. Then, using Divergence Theorem, we have∫

Ωl

(· · · ) =
∫
C

(f(ul)ϕ, ulϕ) ·
(1,−X ′(t))√
1 + (X ′(t))2

ds,
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and similarly, we have∫
Ωr

(· · · ) = −
∫
C

(f(ur)ϕ, urϕ) ·
((1,−X ′(t))√
1 + (X ′(t))2

ds,

and therefore
0 =

∫ t2

t1

ϕ(X(t), t)[f(u)]−X ′(t)[u]dt.

Remark: If u is C1 solution of PDE on each side of C and R-H condition is satisfied, then
u is a weak solution of the PDE.
Example:

1. Consider the Burger’s Equation
ut +

(
u2

2

)
= 0,

u(x, 0) =

1, x < 0,

0, x0.
.

Then R-H demands that

s′(t) =
[f(u)]

[u]
=

1
2
− 0

1− 0
= 1/2,

and s(0). Thus s(t) = t/2, and 1/2 is called the shock wave speed;

2. Consider the above PDE with

g(x) =

0, x < 0,

1, x ≥ 0.

Then we define

u(x, t) =


0, x < 0,

x
t
, 0 < x

t
< 1,

1, x
t
≥ 1.

Then u is a weak solution. There is another weak solution defined using R-H condition
at the curve s′(t) = 1/2, but it is not Physical. We will talk about that later;

3. Consider the equation with f(u) = u2, and zero initial condition. Set a < 0 < b arbitrary
constants. Then we may split the upper half plane into 4 components by three rays:
X = bt

2
, X = a+bt

2
and X = at

2
. Assigning the values 0, b, a, 0 to each component

counterclockwise, we obtain infinitely many weak solutions.

Big Question: Criterion for “Correct Solutions”? The answer is viscosity/entropy
solution. We consider  ut + (f(u))x = ϵuxx,

u(x, 0) = g(x),
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where ϵ > 0 is called the viscosity coefficient. If limϵ→0 uϵ exists, then it will be called the
viscosity solution of (IVP).

There is an equivalent way of defining entropy solution, which is through entropy condi-
tion:

u(x+ z, t)− u(x, t) ≤ Cz

t
,

for all x, z > 0 ∈ R, t > 0 and C > 0 some constant. This equivalent to that u(x, t) − Cx
t

decreasing in x for any fixed t > 0. Therefore, for each fixed t > 0, u has at most countably
many discontinuities, and at each of which, u jumps down, that is, Example 3. is not an
entropy solution for all a < 0 < b.

Theorem 6.0.3. Suppose f is uniformly convex f ′′ ≥ θ > 0. If g ∈ L∞(R), then

(IV P )

ut + (f(u))x = 0, x ∈ R, t > 0,

u(x, 0) = g(x),

has one and only one bounded weak solution satisfying entropy solution, and

∥u∥L∞(R×(0,∞)) ≤ ∥g∥L∞(R) .

Existence: Oleinik: AMS translate series 2, 26. 95-173,33; 285-290. If f is not uniformly
convex, or if (IVP) is a system, see “Vanishing Viscosity Systems” by Bianchini & Bressan,
Annals of Math, 2005.
Riemann Problem: Always assume f ′′ ≥ θ > 0. We consider

ut + (f(u))x = 0,

u(x, 0) = g(x) =

ul, x < 0,

ur, x > 0,

where ur, ul are constants. In the case ur = ul, the entropy solution is exactly u = ul = ur.
When ul > ur, we then have f ′(ul) > f ′(ur). We consider the curve s′(t) = f(ul)−f(ur)

ul−ur
=: σ,

because f is concave up, then we have

f ′(ur) < s′(t) < f ′(ul),

and

u(x, t) =

ul, if x
t
< σ,

ur, if x
t
≥ σ.

Because for each fixed t > 0, u jumps down, then it’s an entropy solution. Here we would like
to call s(t) shock wave, and s′(t) the shock speed. In the case ul < ur, we have f ′(ul) < f ′(ur),
and so

dX

dt
= f ′(g(0)) = f ′(c), c ∈ (ul, ur).
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But we also have x = tf ′(c), which gives c = (f ′)−1
(
x
t

)
. Thus, we obtain a formula

u(x, t) = g(0) = c = (f ′)−1
(x
t

)
, (x, t) in the conic region.

We claim that u is a classical solution to the PDE in the conic region: Let G = (f ′)−1, then
in the region, we have

ut + (f(u))x = G′
(x
t

)(−x
t2

)
+

1

t
f ′
(
G
(x
t

))
G′
(x
t

)
= 0.

We also claim that u is an entropy solution: Notice that

u(x, t) =


ul,

x
t
< f ′(ul),

G
(
x
t

)
, f ′(ul) <

x
t
< f ′(ur),

ur, f ′(ur) <
x
t
.

Define

G̃(v) =


ul, v < f ′(ul),

G
(
x
t

)
, f ′(ul) < v < f ′(ur),

ur, f ′(ur) < v.

Then G(f ′(u)) = u implies that G′(f ′(u))f ′′(u) = 1, and because f ′′ ≥ θ > 0, we have

0 < G′(v) =
1

f ′′(u)
≤ 1

θ
,

which shows that G̃ is globally Lipschistz on R. Observe u(x, t) = G̃
(
x
t

)
, and then for z > 0

and x ∈ R, t > 0

u(x+ z)− u(x, t)

z
=
G̃
(
x+z
t

)
− G̃

(
x
t

)
z

≤
L z

t

z
=
L

t
.

Vanishing Viscosity Method
Consider 

ut +
(

u2

2

)
= 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

u0 ∈ L∞(R).

The goal is to find a Physically meaningful solution. The strategy is to replace the equation
by ut +

(
u2

2

)
= µuxx, for some small µ. The constant µ is called viscosity coefficient, and we

will show that
lim
µ→0

uµ(x, t)

exists and is exactly an entropy solution. (The work is done by Hopf.)
Discussion: We rewrite the equation as

ut =
(
µux −

u

2
u
)
x

= µ

(
ux −

u

2µ
u

)
x

= µ
(
e
∫ x
0

u(y)
2µ dy

(
e−

∫ x
0

u(y)
2µ dy

)
x

)
x
.
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Integrating both sides w.r.t. x, and we have

d

dt

∫ x

0

u(y, t)dy = µe
∫ x
0

u(y)
2µ dy

(
e−

∫ x
0

u(y)
2µ dy

)
x
+ c(t),

which further gives

d

dt

(
e−

∫ x
0

u(y,t)
2µ dy

)
· (−2µ) = µ

(
e−

∫ x
0

u(y)
2µ dy

)
x
+ c(t)e−

∫ x
0

u(y,t)
2µ dy.

Letting (this is called “Hopf transform”)

ϕ(x, t) = e−
∫ x
0

u(y,t)
2µ dy,

we then have
−2µϕt = −2µ2ϕxx + c(t)ϕ,

which means
ϕt = µϕxx + c(t)ϕ.

Therefore, we have (
e−

∫ t
0
c(τ)dτϕ

)
t
= µ

(
e−

∫ t
0
c(τ)dτϕ

)
xx
.

Letting ψ = e−
∫ t
0
c(τ)dτϕ, we know that ψ satisfies ψt = µψxx,

ψ(x, 0) = e
∫ x
0

−u0(y)
2µ dy = eO(|x|).

Thus, we have
ψ(x, t) =

1√
4πµt

∫ ∞

−∞
e−

(x−y)2

4µt ψ(y, 0)dy,

and

u(x, t) = −2µ
ϕx

ϕ

= −2µ
ψx

ψ

=

∫∞
−∞

x−y
t

exp
[
−(x−y)2

4µt
− 1

2µ

∫ y

0
u0(ξ)dξ

]
dy∫∞

−∞ e−
(x−y)2

4µt ψ(y, 0)dy

=

∫∞
−∞

x−y
t

exp
(

−1
4µt

[
(x− y)2 + 2t

∫ y

0
u0(ξ)dξ

])
dy∫∞

−∞ e−
(x−y)2

4µt ψ(y, 0)dy
.

We define F (x, y, t) = (x− y)2 + 2t
∫ y

0
u0(ξ)dξ. Fix (x, t) ∈ R× R+, we know that

F (x, y, t)

y2
−→ 1,

as |y| → ∞, then there is a global minimum point ȳ(x, t) of F . Therefore, we may write

u(x, t) =

∫∞
−∞

x−y
t

exp
(

−1
4µt

[F (x, y, t)− F (x, ȳ, t)]
)
dy∫∞

−∞ e−
(x−y)2−F (x,ȳ,t)

4µt ψ(y, 0)dy
.
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If ȳ(x, t) is unique, denote

Gµ(y) =
exp

(
−1
4µt

[F (x, y, t)− F (x, ȳ, t)]
)

∫∞
−∞ e−

(x−y)2−F (x,ȳ,t)
4µt ψ(y, 0)dy

,

and we claim that Gµ(y) converges to δ(y− ȳ(x, t)). To see why, we first check that its integral
is 1 (this is easy to see), and for every δ > 0,

∫
|y−ȳ|Gµ(y)dy converges to 0 as µ→ 0. To see

the latter one, we first claim F (x, y, t) − F (x, ȳ(x, t), t) ≥ Cδ(x, t)(y − ȳ)2 for all |y − ȳ| ≥ δ

(Exercise). Then we have

∫
|y−ȳ|≥δ

Gµ(y)dy =

∫
|y−ȳ|≥δ

exp
(

−1
4µt

[F (x, y, t)− F (x, ȳ, t)]
)
dy∫∞

−∞ exp
(

−1
4µt

[F (x, y, t)− F (x, ȳ, t)]
)
dy

≤

∫
|y−ȳ|≥δ

e−
C(x,t)
4µt (y−ȳ)2dy∫∞

−∞ exp
(

−1
4µt

[F (x, y, t)− F (x, ȳ, t)]
)
dy

=

∫
|z|≥δ

√
C(x,t)
4µt

e−z2

dz∫∞
−∞ exp

(
−1
4µt

[F (x, y, t)− F (x, ȳ, t)]
)
dy

·

√
4tµ

C(x, t)
.

In the meantime, the bottom is greater than∫
|y−ȳ|<ϵ

exp
(
−1

4µt
[F (x, y, t)− F (x, ȳ, t)]

)
dy,

and when ϵ > 0 is small, we have F (x, y, t) − F (x, ȳ, t) ≤ δ2C(x, t), which makes the above
quantity greater than

exp
[
−δ2C(x, t)

4µt

]
· 2ϵ.

Now, the original term is less than

2
√

4µt
C(x,t)

∫∞
δ
√

C(x,t)
4µt

e−z2

dz

exp
[
−δ2C(x,t)

4µt

]
· 2ϵ

≤
2
√

4µt
C(x,t)

∫∞
δ
√

C(x,t)
4µt

ze−z2

dz

exp
[
−δ2C(x,t)

4µt

]
· 2ϵ

≤ 2

√
4µt

C(x, t)
· 1

4ϵ

−→ 0,

as µ→ 0. Thus, we have

lim
µ→0

u(x, t) = lim
µ→0

∫ ∞

−∞

x− y

t
Gµ(y)dy =

x− ȳ(x, t)

t
.

Question: What if ȳ(x, t) not unique? Let y∗(x, t) be the largest, and y∗(x, t) the smallest.
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We then have

u(x, t) =

∫ ∞

−∞

x− y

t
Gµ(y)dy

=

∫ ∞

−∞

(
x− y∗
t

+
y∗ − y

t

)
Gµ(y)dy

=
x− y∗
t

+

∫ ∞

−∞

y∗ − y

t
Gµ(y)dy

≤ x− y∗
t

+

∫ y∗

−∞

y∗ − y

t
Gµ(y)dy,

but Gµ

∣∣
(−∞,y∗)

(y) converges to δ(y − y∗), and thus, we have

lim sup
µ→0

u(x, t) ≤ x− y∗
t

+ 0.

Similarly, we have
lim inf
µ→0

u(x, t) ≥ x− y∗

t
+ 0.

Now, we are going to show several facts about the limit.

Proposition 6.0.1. Fact 1. For x < x′, we have

y∗(x, t) ≤ y∗(x, t) ≤ y∗(x
′, t) ≤ y∗(x′, t).

证明. Observe that

F (x′, y, t)− F (x′, y∗(x, t), t) = (x′ − y)2 + 2t

∫ y

0

u0(ξ)dξ − (x′ − y∗(x, t))2 − 2t

∫ y∗(x,t)

0

u0(ξ)dξ

= y2 − (y∗)2 − 2x′(y − y∗) + 2t

(∫ y

0

u0(ξ)dξ −
∫ y∗(x,t)

0

u0(ξ)dξ

)
= F (x, y, t)− F (x, y∗(x, t), t)− 2(x′ − x)(y − y∗(x, t))

≥ 0.

Fact 1. shows that both y∗ and y∗ are increasing in x and hence have at most countably
jump discontinuities for each t > 0. Moreover if y∗ (y∗) is continuous at x0, then so is y∗ (y∗),
and y∗(x0, t) = y∗(x0, t). Thus for at most countably many points, y∗ = y∗ for each fixed
t > 0.

Thus, we may define vanishing viscosity solution as

v(x, t) =


x−y∗

t
, if y∗ is continuous at x,

x−y∗(x−0,t)
t

, otherwise.

Then, we see that v satisfies entropy condition:

v(x+ z, t)− v(x, t)

z
=
z − y∗(x+ z − 0, t) + y∗(x− 0, t)

tz
≤ 1

t
.
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Proposition 6.0.2. Fact 2. We have the bound

|x− y∗|
t

,
|x− y∗|

t
≤ ∥u0∥L∞(R) .

In particular, both y∗ and y∗ converges to x uniformly as t→ 0.

证明. Let ȳ(x, t) = y∗ or y∗. Then we have

(x− ȳ(x, t))2 + 2t

∫ ȳ(x,t)

0

u0(ξ)dξ ≤ (x− y)2 + 2t

∫ y

0

u0(ξ)dξ, ∀y ∈ R.

For α ∈ (0, 1), we take y such that x− y = α(x− ȳ), then

(x− ȳ)2 ≤ α2(x− ȳ)2 + 2t

∫ y

ȳ

u0(ξ)dξ,

and so
(1− α)(1 + α)(x− ȳ)2 ≤ 2t ∥u0∥L∞(R) |y − ȳ|,

where by definition, we have y − ȳ = (1− α)(x− ȳ), and hence

|x− ȳ|
t

≤ 2

1 + α
∥u0∥L∞(R) .

Sending α to 1, we are done.

Now, we turn to the boundary condition.

Proposition 6.0.3. Fact 3. For a < b real numbers, we have∫ b

a

v(x, t)dx
t→0−→

∫ b

a

u0(ξ)dξ.

This implies that for all ϕ ∈ C0
0 (R)∫ ∞

−∞
v(x, t)ϕ(x)dx

t→0−→
∫ ∞

−∞
u0(ξ)ϕ(ξ)dξ.

证明. The latter statement is obtain by taking a sequence of step functions that approaches
the chosen continuous function. To prove the prior one, we first study the case that u0 ∈
C0(R) ∩ L∞(R). We then see

F (x, y, t) = (x− y)2 + 2t

∫ y

0

u0(ξ)dξ

has critical point y∗(x, t), which implies that

2(y∗ − x) + 2tu0(y∗) = 0,

and so u0(y∗(x, t)) = x−y∗
t

= v(x, t), x− a.e. on R. Now, we have∫ b

a

v(x, t)dx =

∫ b

a

u0(y∗(x, t))dx −→
∫ b

a

u0(x)dx,
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as t→ 0.
For general u0 ∈ L∞(R), because y∗ is monotone in x, we have∫ b

a

v(x, t)dx = lim
n→∞

n−1∑
i=0

xi +∆x− y∗(xi +∆x, t)

t
∆x.

Observe

2(x− y∗(x, t))∆x = (x+∆x− y∗(x, t))
2 − (x− y∗(x, t))

2 − (∆x)2

= F (x+∆x, y∗(x, t), t)− 2t

∫ y∗(x,t)

0

u0(ξ)dξ

−

(
F (x, y∗(x, t), t)− 2t

∫ y∗(x,t)

0

u0(ξ)dξ

)
− (∆x)2

≥ F (x+∆x, y∗(x+∆x, t), t)− F (x, y∗(x, t), t)− (∆x)2,

and then replace x by xi, we have

2
n−1∑
i=0

(xi − y∗(xi, t))∆x ≥ −∆x(b− a) + F (xn, y∗(xn, t), t)− F (x0, y∗(x0, t), t).

But LHS converges to 2t
∫ b

a
v(x, t)dx, while LHS converges to F (b, y∗(b, t), t)−F (a, y∗(a, t), t).

On the other hand, we have

2t

∫ b

0

u0(ξ)dξ = F (b, b, t) ≥ F (b, y∗(b, t), t)

= (b− y∗)
2 + 2t

∫ y∗(b,t)

0

u0(ξ)dξ

≥ 2t

∫ y∗(b,t)

0

u0(ξ)dξ.

Similarly, we have

−2t

∫ a

0

u0(ξ)dξ ≤ −F (a, y∗(a, t), t) ≤ −2t

∫ y∗(a,t)

0

u0(ξ)dξ.

Now, we obtain ∫ y∗(b,t)

a

u0(ξ)dξ ≤
∫ b

a

v(x, t)dx ≤
∫ b

y∗(a,t)

u0(ξ)dξ.

By Fact 2., we are done.

Proposition 6.0.4. Fact 4. For all t > 0, we have

∥uµ(·, t)∥L∞(R) ≤ ∥u0∥L∞(R) .

证明. Mollify u0 by uoϵ = jϵ ∗ u0, then uoϵ ∈ C∞(R), and

∥uoϵ∥L∞(R) ≤ ∥u0∥L∞(R) ,
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and uoϵ converges to u pointwise a.e. on R. Consider Cauchy problem ut +
(

u2

2

)
x
= µuxx,

u(x, 0) = u0ϵ(x).

We know that this problem admits a unique solution uϵ,µ ∈ C∞(R × [0,∞)). By Maximum
Principle we know that

∥uϵ,µ∥L∞(R×[0,∞)) ≤ ∥uoϵ∥L∞(R) ≤ ∥u0∥L∞(R) .

Because uϵ,µ converges to uµ pointwise, as ϵ→ 0, we know the bound also hold for uµ.

Finally we have the tools to show that v is a weak solution. Recall that uµ ∈ C∞(R ×
(0,∞)) is a solution to the equation with viscosity µ. Fix δ > 0, and w ∈ C1

0 (R× [0,∞)), we
have ∫ ∞

δ

∫ ∞

−∞

(
ut +

(
u2

2

)
x

)
wdxdt =

∫ ∞

δ

∫ ∞

−∞
µuxxwdxdt.

Observe that

LHS = −
∫ ∞

δ

∫ ∞

−∞
uwt +

u2

2
wxdxdt−

∫ ∞

−∞
u(x, δ)w(x, δ)dx.

Using the facts: u(x, t) converges to v(x, t) x − a.e. for all t > 0 and Fact 4., and applying
L.D.C.T., we know LHS converges to

−
∫ ∞

δ

∫ ∞

−∞
vwt +

v2

2
wxdxdt−

∫ ∞

−∞
v(x, δ)w(x, δ)dx.

Also observe
∫
v(x, δ)w(x, 0)dx converges to

∫
u0(x)w(x, 0)dx by Fact 3., and

∫
v(x, δ)(w(x, δ)−

w(x, 0))dx converges to 0 as δ → 0 because w has compact support, and so we obtain∫ ∞

0

∫ ∞

−∞
vwt +

v2

2
wxdxdt+

∫ ∞

−∞
v(x, 0)w(x, 0)dx = 0.

The Function F (x, y, t): We the solution to the PDE with f(u) = u2/2 is of the form

v(x, t) =
x− y∗(x, t)

t
,

with y∗ the smallest minimum point of

F (x, y, t) = (x− y)2 + 2t

∫ y

0

u0(ξ)dξ.

In the Riemann Problem that u0(x) = χ(0,∞), we see the corresponding function

F (x, y, t) = (x− y)2 + 2tyχ(0,∞).

For fixed (x, t), the critical points in y are

• x ≤ 0, y∗(x, t) = x;
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• x > t, y∗(x, t) = x− t;

• 0 < x ≤ t, y∗(x, t) = 0.

Large-time Behaviour of Entropy Solution: Suppose u0 ∈ L∞(R) ∩ L1(R). Because y∗
is the smallest minimum point of F , we know that

(x− y∗)
2 + 2t

∫ y∗

0

u0(ξ)dξ ≤ F (x, x, t) = 2t

∫ x

0

u0(ξ)dξ,

which gives
(x− y∗)

2 ≤ 2t

∫ x

y∗

u0(ξ)dξ,

and thus
v2(x, t) ≤ 2

t

∫
R
|u0(ξ)|dξ.

Uniqueness of Entropy Solution:

Theorem 6.0.4. Suppose f ∈ C2(R), f ′′ ≥ 0. Let u, v be L∞(R × (0,∞)) two entropy
solutions of  wt + (f(w))x = 0,

w(x, 0) = u0(x).

Then u = v, a.e. on R× (0,∞).

证明. Idea: By definition of weak solution, for any ϕ ∈ C1
0 (R× [0,∞)), we have

x
t>0

(uϕt + f(u)ϕx) dxdt+

∫ ∞

−∞
u0(x)ϕ(x, 0)dx = 0,

and a similar one for v. Let z = u− v, we then have
x
t>0

(zϕt + (f(u)− f(v))ϕx) dxdt = 0,

but we also have

f(u)− f(v) =

∫ 1

0

d

dr
f(ru+ (1− r)v)dr =

∫ 1

0

f ′(ru+ (1− r)v)drz =: b(x, t)z,

and hence x
t>0

(z (ϕt + b(x, t)ϕx)) dxdt = 0.

If one can show for all ψ ∈ C∞
0 (R× (0,∞)), there is a ϕ ∈ C∞

0 (R× [0,∞)) such that

ϕt + b(x, t)ϕx = ψ, on R× [0,∞),

then we have z = 0 a.e.. However, the agony is that b(x, t) is bad. To resolve this, we will
mollify u, v. Let u, v vanish on the lower half plane, and

uϵ(x, t) = jϵ ∗x,t u(x, t), vϵ(x, t) = jϵ ∗x,t v(x, t).
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Because |u|, |v| are bounded by M , so are uϵ, vϵ, and

uϵ −→ u; vϵ −→ v,

pointwise as ϵ→ 0. Thus, we have

bϵ(x, t) :=

∫ 1

0

f ′(ruϵ + (1− r)vϵ)dr ∈ C1(R2).

We now have to solve ϕt + bϵ(x, t)ϕx = ψ. For x ∈ R, t > 0, the C.C. passing through (x, t)

is given by 
dX(s)
ds

= bϵ(X(s), s),

X(s)
∣∣
s=t

= x.

Observe that there is no finite time blow up because bϵ is bounded for ϵ > 0, and the solution
X(s;x, t) exists and is unique. By ODE, we know that X ∈ C1(R3). Take large T such that
ψ ≡ 0 if t ≥ T . Solve ϕt + bϵ(x, t)ϕx = ψ, (x, t) ∈ R2,

ϕ(x, T ) = 0, x ∈ R.

Integrating the PDE along the path X(s) = X(s;x, t), we know

ϕ(X(T ;x, t), T )− ϕ(X(t;x, t), t) =

∫ T

t

ψ(X(s;x, t), s)ds,

and so
ϕ(x, t) = −

∫ T

t

ψ(X(s;x, t), s)ds.

Let A be a large number such that Supp{ψ} ⊂⊂ (−A,A)× (0, T ) and K ̸∼ ϵ, (x, t) an upper
bound for bϵ, we then observe

X(s;A+KT, 0) ≥ A+KT − sK ≥ A, 0 ≤ s ≤ T,

and
X(s;−A−KT, 0) ≤ −A−KT + sK ≤ −A, 0 ≤ s ≤ T.

Thus ϕ ∈ C1
0 (R× [0,∞). We discuss the properties of ϕ in two steps.

Step 1. For any small δ > 0 such that ψ ≡ 0, 0 ≤ t < δ, we have |ϕx| is bounded by a number
independent of ϵ on R× [δ, T ]: Recall that

ϕx(x, t) = −
∫ T

t

(ψ(X(s;x, t), s))x ds

= −
∫ t

T

ψx(X(s;x, t), s)
∂X

∂x
ds.

Observing that  d
ds

∂X
∂x

(s;x, t) = ∂bϵ
∂x

∂X
∂x
,

∂X
∂x

(t;x, t) = 1,
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we know

∂X

∂x
= e

∫ s
t

∂bϵ
∂x (X(τ ;x,t),τ)dτ .

But

∂bϵ
∂x

(X(τ ;x, t), τ) =
∂

∂x

(∫ 1

0

f ′(ruϵ + (1− r)vϵ)dr

) ∣∣∣∣
x=X,t=τ

=

∫ 1

0

f ′′(· · · )
(
r
∂uϵ
∂x

+ (1− r)
∂vϵ
∂x

)
dr

∣∣∣∣
x=X,t=τ

.

By entropy condition, we have for all z ≥ 0, τ ≥ t ≥ δ,

u(x+ z, τ)− u(x, τ)

z
≤ C

τ
≤ C

δ
,

which implies that
∂uϵ
∂x

(x, τ) ≤ C

δ
,

and
∂vϵ
∂x

(x, τ) ≤ C

δ
.

Thus bϵ is bounded above for x ∈ R, and so are ∂X
∂x

and |ϕx| in R× [δ, T ];

Step 2. For all small δ > 0 such that ψ(·, t) ≡ 0 for t ≤ δ, we have∫ ∞

−∞
|ϕx|(x, t)dx ≤ C ̸∼ ϵ,

for all 0 < t ≤ δ. Let a = A+KT , we have∫
R
|ϕx(x, t)|dx =

∫ a

−a

|ϕx(x, t)|dx

= V a
−aϕ(·, t)

= sup
{

m∑
i=0

|ϕ(xi+1, t)− ϕ(xi, t)|; {xi} is a partition of [−a, a]

}
, .

Notice that
ϕ(x, t) = −

∫ T

t

ψ(X(s;x, t), s)ds,

we know when t ≤ δ, it is a constant along each C.C. (may depend on ϵ). Therefore 

equals to

sup
{

m∑
i=0

|ϕ(xi+1, δ)− ϕ(xi, δ)|; {xi} is a partition of [−a, a]

}
=

∫ a

−a

|ϕx|(x, δ)dx

≤ 2a ∥ϕx(·, δ)∥L∞(R) .

Coming back to x
t>0

z (ϕt + bϵϕx) dxdt =
x
t>0

(bϵ − b)ϕxzdxdt.
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We already know
LHS =

x
t>0

zψdxdt,

and hence it suffices to show RHS converges to 0 as ϵ→ 0, which is easy to obtain using Step
1. and 2..

106



Appendices

107





附录 A

Some Regularity Theories

A.1 Interior Regularity of Distributional Solutions

The problem comes from geometric analysis, and if you are not interested in the geometry,
you may start with Equation (A.1.1): Let (M, g) be a real oriented compact Riemannian
manifold of dimension n ≥ 1. On a chart x : U ′ ⊂ M ↪→ U ⊂ Rn, we know that g = (gij) :

U → Rn×n. Given any point p ∈ U ′, the tangent space TpM is defined to be the set {(x, v); v ∈
Tx(p)U} modulo the equivalence relation: (x, v) ∼ (y, w) if and only if w = d(y◦x−1)v. Now g

naturally induces an inner product on TpM by ([(y, v)], [(x, u)]) = (d(y◦x−1)v)T ·gu, which is
well-defined because g is assumed compatible with transition map. On the dual space TpM

∗

of TpM , there is also an inner product induced by g−1 = (gij), which is also compatible with
transition maps (it is also natural in the viewpoint of linear algebra). The dual basis with
respect to { ∂

∂xi
}ni=1 will be denoted by {dxi}ni=1.

A k-form is a smooth global section to the bundle
∧k

TM∗, and we denote the collection
of it by Ak(M). We are now able to define inner product on Ak(M):

(α, β) :=

∫
M

α ∧ ∗β,

where ∗ is the Hodge star operator. With the differential d : Ak → Ak+1 we define d∗ =

(−1)n(k+1)+1 ∗ d∗ : Ak → Ak−1. The form Laplacian is then

∆form = dd∗ + d∗d.

When restricted to A0, the form Laplacian is exactly negative sign Laplace-Beltrami operator
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∆L−B: for u, v ∈ A0, and supp{v} ⊂⊂ U ′ for (U ′,x) a chart, we have

(∆formu, v) = (d∗du, v)

= (du, dv)

=

∫
U

gij(du)i(dv)j
√

det(g)dx1 · · · dxn

=

∫
U

gij
∂u

∂xi

∂v

∂xj

√
det(g)dx1 · · · dxn

= −
∫
U

∂

∂xj

(√
det(g)gij ∂

∂xi
u

)
vdx1 · · · dxn

= −(∆L−Bu, v),

where we have used Einstein’s notations. From now on, we simply consider ∆ = ∆L−B.

Definition A.1. A k-form α is called harmonic if ∆α = 0, and we denote by Hk the
collection of harmonic k-form.

Theorem A.1.1. (Hodge Decomposition Theorem) We have the following decomposition
of Ak:

Ak = ∆(Ak)
⊕

Hk

= dd∗(Ak)
⊕

d∗d(Ak)
⊕

Hk

= d(Ak−1)
⊕

d∗(Ak+1)
⊕

Hk.

The orthogonality is clear to see and the essential PDE problem is: given a k-form α, is
there another k-form ω such that

∆ω = α?,
It’s not hard to notice that a k-form is harmonic if and only if all its coefficients are harmonic,
and so to solve the PDE problem, one may simply consider scalar functions. The first problem
we meet is how to define a solution. In a classical manner it is not clear to see the existence
of solution, and so we need the theory of distributions. Notice that a classical solution ω to
, satisfies for every ν ∈ Ak,

(α, ν) = (∆ω, ν) = (ω,∆ν).

The right hand side thus defines a bounded linear functional on the subspace ∆(Ak) of Ak.
This functional has a natural extension l(·) = (ω, ·) on the whole Ak.

Definition A.2. A distributional solution to , is defined to be a bounded linear functional
l ∈ (Ak)∗ such that

l(∆ϕ) = (α, ϕ),

for all ϕ ∈ Ak.

Before everything starts, we state two important theorems, details of which will be dis-
cussed later.

110



Theorem A.1.2. (A) A distributional solution always have a smooth incarnation. That is
to say, if l is a distributional solution then there is an ω ∈ Ak such that l(ϕ) = (ω, ϕ) for all
ϕ ∈ Ak. This also forces ω to be a classical solution.

Theorem A.1.3. (B) Any sequence of k-forms αm such that ∥αm∥+ ∥∆αm∥ ≤ C for some
C > 0 independent of m has a Cauchy subsequence.

proof of the big guy. It is clear by theorem B, the dimension of Hk should be finite, otherwise
there will be an infinite sequence of orthonormal basis, which contains no Cauchy subsequence.
Now, Hk naturally becomes a closed subspace of Ak and so we may write

Ak = Hk
⊕

(Hk)⊥.

Because ∆ is self-adjoint, we find that ∆(Ak) ⊂ (Hk)⊥. To show that (Hk)⊥ ⊂ ∆(Ak), we
need to prove the following inequality

∥β∥ ≤ C ∥∆β∥ , ∀β ∈ (Hk)⊥.

Suppose the contrary, we obtain a sequence ∥βj∥ = 1 and ∥∆βj∥ → 0 as j → ∞. Define
l(ϕ) = limj→∞(βj , ϕ) for each ϕ ∈ Ak, we have that l is bounded and linear on Ak and has
norm 1. On the other hand, we have

l(∆ϕ) = lim(βj ,∆ϕ) = lim(∆βj , ϕ) = 0.

Now l is a distributional solution to , with α = 0. By theorem A, there is a k-form β such
that ∆β = 0. Each βj is orthogonal to Hk, and so is β. Therefore β = 0, but the convergence
in L2-norm of βj to β forces ∥β∥ = 1.

Let H : Ak → Hk be the natural projection, we have

l(∆ϕ) = (α, ϕ−H(ϕ))

is well defined, and
|l(∆ϕ)| ≤ ∥α∥ ∥ϕ−H(ϕ)∥ ≤ C ∥α∥ ∥∆ϕ∥ .

By Hahn-Banach Theorem, there should be an extension of l to the whole space Ak. Now, a
simple application of theorem A establishes the solution.

proof of B. Let U ′′ ⊂⊂ U ′ ⊂ M and (U ′,x) be a chart (U := x(U ′)). Suppose ϕ ∈ C∞
0 (U ′)

such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on U ′′, we then have (by considering the inner product
component-wise)

|(∆αm, αmϕ
2)| =

∣∣∣∣∫
U

∂i

(
gij
√

det g∂jαm

)
αmϕ

2dx1 · · · dxn
∣∣∣∣

=

∣∣∣∣∫
U

(
gij
√

det g∂jαm

)
∂i
(
αmϕ

2
)
dx1 · · · dxn

∣∣∣∣
≥
∣∣∣∣∫

U

ϕ2gij
√

det g∂iαm∂jαm

∣∣∣∣− 2

∣∣∣∣∫
U

ϕαmg
ij
√

det g∂jαm∂iϕ

∣∣∣∣ .
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Since (gij) is positive definite and 2|ab| ≤ |a|/ϵ+ ϵ|b| for all ϵ > 0, we have, by taking ϵ = 1/2

RHS ≥ 1

2

∣∣∣∣∫
U

ϕ2gij
√

det g∂iαm∂jαm

∣∣∣∣− 2

∣∣∣∣∫
U

α2
mg

ij
√

det g∂iϕ∂jϕ
∣∣∣∣

≥ C

2

∫
x(U ′′)

|∇αm|2 − 2C

∫
U

α2
m

√
det g.

On the other hand,
|(∆αm, αmϕ

2)| ≤ ∥αm∥ ∥∆αm∥ ,

and then know that αm is a bounded sequence in W 1,2(x(U ′′)). By Relich-Kondrakov compact
embedding, we know that the inclusion W 1,2

0 (V ) ↪→ L2(V ) ∼= L2(V,
√

det g) is compact for
every bounded V ⊂⊂ U , which means that αm restricted to some U ′′′ ⊂⊂ U ′′ should have a
Cauchy subsequence. By compactness of M , we know that there must be a Cauchy sequence
in the original sequence αm.

proof of A. By taking a chart (U ′,x) (U := x(U ′)), we localizes the distributional solution l so
that now it is a bounded linear functional on L2(U,

√
det g). By Riesz representation theorem,

there is an element w in L2(U,
√

det g) such that l(ϕ) =
∫
U
wϕ

√
det gdx⃗ for all ϕ ∈ C∞

0 (U)

(clearly ϕ ◦ x ∈ A0). Replacing ϕ by ∆ϕ, we obtain

(α, ϕ) = l(∆ϕ) =

∫
U

w∂i

(
gij
√

det g∂jϕ
)
dx⃗.

On the other hand,
LHS =

∫
U

αϕ
√

det gdx⃗.

Denoting aij = gij
√

det g and c = α
√

det g, we know w ∈ L2(U,
√

det g) ∼= L2(U) satisfies
integral equation ∫

U

w∂i(aij∂jϕ) =

∫
U

cϕ, ∀ϕ ∈ C∞
0 (U). (A.1.1)

To show the smoothness of w it suffices to show the existence of its L2 first order derivatives
(see Chapter 4). Since smoothness is a local property we restrict our attention to one point
y⃗ ∈ U and some small ball Br := B(y⃗, r) ⊂⊂ U .

The idea is to solve an auxiliary Dirichlet problem:

/
∂i(aij∂jϕ)(x⃗) = ψ(x⃗), x⃗ ∈ Br,

ϕ(x⃗) = 0, x⃗ ∈ ∂Br.

This problem has a unique smooth solution ϕ ∈ C∞(Br)∩C0
(
Br

)
for each ψ ∈ C∞

0 (Br). We
define for h ̸= 0 and k = 1, · · · , n,

T h
k f(x1, · · · , xk, · · · , xn) := f(x1, · · · , xk + h, · · · , xn),

and difference quotient

Dh
kf :=

T h
k f − f

h
.
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Now, we have for ψ ∈ C∞
0 (Br/2) and 0 < |h| << 1, the problem / has a unique solution ϕk,h

for each T h
k ψ. By linearity of the PDE and if we denote P k,h = ϕj,h−ϕ

h
, we obtain∂i(aij∂jP k,h)(x⃗) = Dh

kψ(x⃗), x⃗ ∈ Br,

P k,h(x⃗) = 0, x⃗ ∈ ∂Br.
(A.1.2)

Applying P k,h to both sides we have∫
Br

aij∂iP
k,h∂jP

k,h = −
∫
Br

Dh
kψP

k,h

=

∫
Br

ψD−h
k P k,h

≤ ∥ψ∥
∥∥D−h

k P k,h
∥∥

≲ ∥ψ∥
∥∥∇P k,h

∥∥ .
By strict ellipticity of aij we obtain ∥∥∇P k,h

∥∥ ≲ ∥ψ∥ .

Moreover, by Poincaré inequality,∥∥∇P k,h
∥∥+ ∥∥P k,h

∥∥ ≲ ∥ψ∥ . (A.1.3)

Roughly speaking: equation (A.1.1) can be reformulated as

Lh
k(ψ) :=

∫
Br

wDh
kψ =

∫
Br

cP k,h.

According to (A.1.3), the sequence of functionals Lh
k is uniformly bounded in (L2(Br/2))

∗. By
Banach-Alaoglu theorem, there is an Lk ∈ (L2(Br/2))

∗ such that Lh
k ⇀ Lk as h→ 0. This Lk

has an L2(Br/2) incarnation −wk. In particular, we have∫
Br

wDh
kψ

h→0−→ −
∫
Br

wkψ.

On the other hand, by LDCT,
LHS

h→0−→
∫
Br

w∂kψ.

One Last Problem: This rough idea seems feasible but there is still one remaining
problem that each ϕk,h is not smooth when extended naturally to U . This requires one to
cut off each ϕk,h. Let η ∈ C∞

0 (B4r/5), 0 ≤ η ≤ 1 and η ≡ 1 on B3r/5. Define Qk,h = P k,hη ∈
C∞

0 (Br) and we have

∂i(aij∂jQ
k,h) = ∂i(aij∂jηP

k,h)

= ∂i(aij∂jP
k,h)η + 2aij∂jP

k,h∂iη + ∂i(aij∂jη)P
k,h

= Dh
kψη + 2aij∂jP

k,h∂iη + ∂i(aij∂jη)P
k,h

= Dh
kψ + trash.
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Again, by equation (A.1.1) we still have a proper estimate∣∣∣∣∫ wDh
kψ

∣∣∣∣ = ∣∣∣∣∫ cQk,h − 2

∫
waij∂jP

k,h∂iη −
∫
wP k,h∂i(aij∂jη)

∣∣∣∣
≲
∥∥P k,h

∥∥+ ∥∥∇P k,h
∥∥

≲ ∥ψ∥ .

A.2 Marcinkiewicz Interpolation and Lp Estimates

The following two sections are copies of the corresponding contents in the book “Ellip-
tic Partial Differential Equations of Second Order”. The differential operator L we mainly
consider in this section is of the form

Lu = aij(x)Diju+ bi(x)Diu+ c(x)u.

A.2.1 Cube Decomposition

Let K0 be a cube in Rn, f nonnegative integrable function on K0 and t > 0 satisfying∫
K0

f ≤ t|K0|.

By bisecting edges of K0, we obtain 2n congruent subcubes with disjoint interiors. For those
cubes K satisfying ∫

K

f ≤ t|K|, (A.2.1)

we subdivide them in a similar manner to K0. We then collect other cubes that are not
subdivided and denote the class by I. For K ∈ I, we call K̃ the cube whose subdivision gives
K. By definition K̃ /∈ I, and therefore

t <
1

|K|

∫
K

f ≤ 2nt. (A.2.2)

Furthermore, setting F = ∪K∈IK and G = K0\F , we have

f ≤ t a.e. in G, (A.2.3)

which is obtained by Lebesgue’s Differentiation Theorem, because almost every point in G is
contained in a decreasing sequence of parallel cubes with diameters shrinking to 0. Letting
F̃ = ∪K∈IK̃, we have by (A.2.1), ∫

F

f ≤ t|F̃ |. (A.2.4)

In particular, when f = χΓ for some measurable subset Γ ⊂ K0, we have

|Γ| = |Γ ∩ F̃ | ≤ t|F̃ |. (A.2.5)
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A.2.2 Marcinkiewicz Interpolation

For f a nonnegative measurable function on a domain Ω (bounded or unbounded) in Rn.
The distribution function µ = µf is defined by

µ(t) = |{x ∈ Ω | f(x) > t}|.

This distribution function measures the relative size of f .

Lemma A.2.1. For p > 0 and f ∈ Lp(Ω), we have

µ(t) ≤ t−p

∫
Ω

|f |p, (A.2.6)

and ∫
Ω

|f |p = p

∫ ∞

0

tp−1µ(t)dt. (A.2.7)

We now prove the following restricted Marcinkiewicz Interpolation.

Theorem A.2.1. (Marcinkiewicz Interpolation Theorem) Let T be a linear mapping
from Lq(Ω) ∩ Lr(Ω) into itself, 1 ≤ q ≤ r < ∞ and suppose there are constants T1 and T2

such that

µTf ≤
(
T1 ∥f∥q

t

)q

, µTf ≤
(
T2 ∥f∥r

t

)r

(A.2.8)

for all f ∈ Lq(Ω) ∩ Lr(Ω) and t > 0. Then T extends as a bounded linear mapping from
Lp(Ω) into itself for any p such that q < p < r, and

∥Tf∥p ≤ CTα
1 T

1−α
2 ∥f∥p (A.2.9)

for all f ∈ Lq(Ω) ∩ Lr(Ω), where
1

p
=
α

q
+

1− α

r

and C depends only on p, q and r.

证明. For f ∈ Lq(Ω) ∩ Lr(Ω) and s > 0, we write

f = f1 + f2,

where
f1(x) = f(x)χ|f |>s.

Then |Tf | ≤ |Tf1|+ |Tf2|, and hence

µTf (t) ≤ µTf1(t/2) + µTf2(t/2)

≤
(
2T1

t

)q ∫
Ω

|f1|q +
(
2T2

t

)r ∫
Ω

|f2|r.
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Therefore, by Lemma A.2.1, we have∫
Ω

|Tf |p = p

∫ ∞

0

tp−1µ(t)dt

≤ p(2T1)
q

∫ ∞

0

tp−1−q

(∫
|f |>s

|f |q
)
dt

+ p(2T2)
r

∫ ∞

0

tp−1−r

(∫
|f |≤s

|f |r
)
dt.

Now, we choose t = As for A some positive number to be fixed later. Thus, we obtain∫
Ω

|Tf |p ≤ p(2T1)
qAp−q

∫ ∞

0

sp−1−q

(∫
|f |>s

|f |q
)
ds

+ p(2T2)
rAp−r

∫ ∞

0

sp−1−r

(∫
|f |≤s

|f |r
)
ds.

But ∫ ∞

0

sp−1−q

(∫
|f |>s

|f |q
)
ds =

∫
Ω

|f |q
∫ |f |

0

sp−1−qds

=
1

p− q

∫
Ω

|f |p,

and similarly, ∫ ∞

0

sp−1−r

(∫
|f |≤s

|f |r
)
ds =

∫
Ω

|f |r
(∫ ∞

|f |
sp−1−rds

)
=

1

r − p

∫
Ω

|f |p.

Consequently, we have∫
Ω

|Tf |p ≤
[

p

p− q
(2T1)

qAp−q +
p

r − p
(2T2)

rAp−r

] ∫
Ω

|f |p

for any positive A. By taking the value of A for which the expression embraces a minimum,
namely

A = 2T
q/(r−q)
1 T

r/(r−q)
2 ,

we thus obtain

∥Tf∥p ≤ 2

(
p

p− q
+

p

r − p

)1/p

Tα
1 T

1−α
2 ∥f∥p .

A.2.3 The Calderon-Zygmund Inequality

Let Ω be a bounded domain in Rn and f a function in Lp(Ω) for some p ≥ 1. Recall the
Newtonian potential of f is the function

w(x) =
∫
Ω

Γ(x − y)f(y)dy,

where Γ is the fundamental solution of Laplace’s equation. The following result is a special
case of Calderon-Zygmund inequality.
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Theorem A.2.2. Let f ∈ Lp(Ω), 1 < p < ∞, and let w be the Newtonian potential of f .
Then w ∈W 2,p(Ω), ∆w = f a.e. and∥∥D2w

∥∥
p
≤ C ∥f∥p , (A.2.10)

where C depends only on n and p. Furthermore, when p = 2 we have∫
R2

|D2w|2 =
∫
Ω

f2. (A.2.11)

证明. i. Let us first deal with the case p = 2. If f ∈ C∞
0 (Rn), we have w ∈ C∞(Rn) and

∆w = f . Consequently, for any ball BR containing the support of f ,∫
BR

(∆w)2 =

∫
BR

f2.

Applying Green’s first identity twice, we have∫
BR

|D2w|2 =
∫
BR

∑
(wij)

2

=

∫
BR

f2 +

∫
∂BR

Dw · ∂Dw
∂ν

.

It’s clear to see that
Dw = O(R1−n), D2w = O(R−n),

uniformly on ∂BR as R→ ∞, whence the identity follows. Recalling that N : f 7→ w is
a bounded linear mapping from Lp(Ω) to itself for 1 ≤ p <∞, the proof is then finished
by applying Interpolation Inequality 4.1.2 and a density argument;

ii. For fixed i, j, we now define the linear operator T : L2(Ω) −→ L2(Ω) by

Tf = Dijw.

By the above equality, we have

µTf (t) ≤
(
∥f∥2
t

)2

, (A.2.12)

for all t > 0 and f ∈ L2(Ω). We now show that, in addition,

µ(t) ≤ C
∥f∥1
t

, (A.2.13)

for all t > 0 and f ∈ L2(Ω), thereby making possible the application of Marcinkiewicz
interpolation theorem. To accomplish this we extend f to vanish outside Ω and fix a
cube Ω ⊂ K0, so that for fixed t > 0 we have∫

K0

|f | ≤ t|K0|.

The cube is now decomposed according to the procedure described in the first Subsection
A.2.1 giving a sequence of parallel subcubes {Kl}∞l=1 such that

t <
1

|Kl|

∫
Kl

|f | < 2nt, (A.2.14)
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and
|f | ≤ t a.e. on G = K0\ ∪Kl.

The function is now split into a “good part” g defined by

g(x) =

f(x), for x ∈ G,

1
|Kl|

∫
Kl

|f |, for x ∈ Kl, l = 1, 2, . . . ,

and a “bad part” b = f − g. Clearly,

|g| ≤ 2nt, a.e.,

b(x) = 0, for x ∈ G,∫
Kl

b = 0, for l = 1, 2, . . . .

Since T is linear, Tf = Tg + Tb; hence,

µTf (t) ≤ µTg(t/2) + µTb(t/2);

iii. Estimation of Tg: By (A.2.12), we have

µTg(t/2) ≤
4

t2

∫
g2

≤ 2n+2

t

∫
|g|

≤ 2n+2

t

∫
|f |;

iv. Estimation of Tb: Writing

bl = bχKl
=

b, on Kl,

0, elsewhere,

we have

Tb =
∞∑
l=1

Tbl.

Let us now fix some l and a sequence {blm} ⊂ C∞
0 (Kl) converging to bl in L2(Ω) and

satisfying ∫
Kl

blm =

∫
Kl

bl = 0.

Then for x /∈ Kl, we have the formula

Tblm(x) =
∫
Kl

DijΓ(x − y)blm(y)dy

=

∫
Kl

{DijΓ(x − y)−DijΓ(x − ȳ)}blm(y)dy,

118



where ȳ = ȳl denotes the center of Kl. Letting δ = δl denote the diameter of Kl, we
then obtain

|Tblm(x)| ≤ C(n)
δ

dist(x,Kl)n+1

∫
Kl

|blm(y)|dy.

Letting Bl = Bδ(ȳ) denote the concentric ball of radius δ, we obtain by integration∫
K0\Bl

|Tblm| ≤ C(n)δ

∫
|x|≥δ/2

dx
|x|n+1

∫
Kl

|blm|

≤ C(n)

∫
Kl

|blm|.

Consequently, letting m→ ∞, writing F ∗ = ∪Bl (F = ∪Kl), G∗ = K0\F ∗ and summing
over l, we get ∫

G∗
|Tb| ≤ C(n)

∫
|b| ≤ C(n)

∫
|f |,

so that

|{x ∈ G∗ | |Tb| > t/2}| ≤ C
∥f∥1
t

.

However, by (A.2.14),

|F ∗| ≤ ωnn
n/2|F | ≤ C

∥f∥1
t

;

v. To conclude the proof we apply Marcinkiewicz Interpolation Theorem for q = 1, r = 2.
Consequently,

∥Tf∥p ≤ C(n, p) ∥f∥p , (A.2.15)

for all 1 < p ≤ 2 and f ∈ L2(Ω). This inequality is extended to p > 2 by duality.

Remark: The operator T can be defined as a bounded operator on Lp(Ω) even when Ω is
unbounded when n ≥ 3.

Corollary A.2.1. Let Ω be a bounded domain in Rn, u ∈W 2,p
0 (Ω), 1 < p <∞. Then∥∥D2u

∥∥
p
≤ C ∥∆u∥p , (A.2.16)

where C = C(n, p). If p = 2, ∥∥D2u
∥∥
2
= ∥∆u∥2 . (A.2.17)

A.2.4 Lp Estimates

This subsection focuses on the derivation of local and global Lp estimates.
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Theorem A.2.3. (Local Lp Estimates) Let Ω be an open set in Rn and u ∈ W 2,p
loc (Ω) ∩

Lp(Ω), 1 < p <∞, a strong solution of the equation Lu = f in Ω where the coefficients of L
satisfy, for positive constants λ, Λ,

aij ∈ C0(Ω), bi, c ∈ L∞(Ω), f ∈ Lp(Ω);

aijξiξj ≥ λ|ξ|2 ∀ξ ∈ Rn;

|aij |, |bi|, |c| ≤ Λ,

(A.2.18)

where i, j = 1, 2, . . . , n. Then for any domain Ω′ ⊂⊂ Ω,

∥u∥2,p;Ω′ ≤ C
(
∥u∥p,Ω + ∥f∥p,Ω

)
, (A.2.19)

where C depends on n, p, λ,Λ,Ω′,Ω and the moduli of continuity of the coefficients aij on Ω′.

证明. For a fixed point x0 ∈ Ω′, we let L0 denote the constant coefficient operator given by

L0u = aij(x0)Diju.

By means of linear transformation, we have by Corollary A.2.1∥∥D2v
∥∥
p;Ω

≤ C

λ
∥L0v∥p,Ω , (A.2.20)

for any v ∈ W 2,p
0 (Ω), where C = C(n, p). Consequently, if v has support in a ball BR =

BR(x0) ⊂⊂ Ω, we have
L0v = (aij(x0)− aij)Dijv + aijDijv,

and hence ∥∥D2v
∥∥
p
≤ C

λ

(
sup
BR

|a− a(x0)|
∥∥D2v

∥∥
p
+
∥∥aijDijv

∥∥
p

)
,

where a = (aij). Since a is uniformly continuous on Ω′, there is a positive number δ such that

|a− a(x0)| ≤ λ/2C

if |x − x0| < δ, and hence ∥∥D2v
∥∥
p
≤ C

∥∥aijDijv
∥∥
p
,

provided R ≤ δ, where C = C(n, p, λ).
For σ ∈ (0, 1), we now introduce a cut-off function η ∈ C2

0 (BR) satisfying 0 ≤ η ≤ 1,
η = 1 in BσR, η = 0 for |x| ≥ σ′R, σ′ = (1+σ)/2, |Dη| ≤ 4/(1−σ)R, |D2η| ≤ 16/(1−σ)2R2.
Then, if u ∈W 2,p

loc (Ω) satisfies Lu = f in Ω and v = ηu, we obtain∥∥D2u
∥∥
p;BσR

≤ C
∥∥ηaijDiju+ 2aijDiηDju+ uaijDijη

∥∥
p;BR

≤ C

(
∥f∥p;BR

+
1

(1− σ)R
∥Du∥p;Bσ′R

+
1

(1− σ)2R2
∥u∥p;BR

)
,

provided R ≤ δ ≤ 1, where C = C(n, p, λ,Λ). Introducing the weighted seminorms

Φk = sup
1<σ<1

(1− σ)kRk
∥∥Dku

∥∥
p;BσR

, k = 0, 1, 2,

120



we, therefore have
Φ2 ≤ C

(
R2 ∥f∥p;BR

+Φ1 +Φ0

)
. (A.2.21)

We claim now that Φk satisfy an interpolation inequality

Φ1 ≤ ϵΦ2 +
C

ϵ
Φ0,

for any ϵ > 0, where C = C(n). By its invariance under coordinate stretching it suffices to
prove for the case R = 1.

For γ > 0, we fix σ = σγ so that

Φ1 ≤ (1− σγ) ∥Du∥p;Bσ
+ γ

≤ ϵ(1− σ)2
∥∥D2u

∥∥
p;Bσ

+
C

ϵ p;Bσ

+ γ,
(A.2.22)

by interpolation inequality. Sending γ → 0, we obtain

Φ2 ≤ C
(
R2 ∥f∥p;BR

+Φ0

)
,

that is ∥∥D2u
∥∥
p;BσR

≤ C

(1− σ)2R2

(
R2 ∥f∥p;BR

+ ∥u∥p;BR

)
, (A.2.23)

where C = C(n, p, λ,Λ) and 0 < σ < 1.
The desired estimate follows by taking σ = 1/2 and covering Ω′ with a finte number of

balls of radius R/2 for R ≤ min{δ,dist(Ω′, ∂Ω)}.

Theorem A.2.4. (Global Lp Estimates) Let Ω be a domain in Rn with a C1,1 boundary
portion T ⊂ ∂Ω. Let u ∈ W 2,p(Ω), 1 < p < ∞ be a strong solution of Lu = f in Ω

with u = 0 on T (in the sense of trace), where L satisfies conditions in local estimates with
aij ∈ C0(Ω ∪ T ). Then, for any domain Ω′ ⊂⊂ Ω ∪ T ,

∥u∥2,p;Ω′ ≤ C
(
∥u∥p;Ω + ∥f∥p;Ω

)
, (A.2.24)

where C depends on n, p, λ,Λ, T,Ω′,Ω and the moduli of continuity of the coefficients aij on
Ω′.

Theorem A.2.5. Let Ω be a C1,1 domain in Rn and suppose the operator L satifies the
conditions in local estimates with aij ∈ C0(Ω̄), i, j = 1, 2, . . . , n. Then if u ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω), 1 < p <∞, we have

∥u∥2,p;Ω ≤ C ∥Lu− σu∥p;Ω , (A.2.25)

for all σ ≥ σ0, where C and σ0 are positive constants depending only on n, p, λ,Λ,Ω and the
moduli of continuity of the coeffients aij.
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证明. We define a domain Ω0 in Rn+1(x, t) by

Ω0 = Ω× (−1, 1),

together with the operator L0, given by

L0v = Lv +Dttv,

for v ∈W 2,p(Ω0). Then, if u ∈W 2,p(Ω) ∩W 1,p
0 (Ω), the function v, given by

v(x, t) = u(x) cosσ1/2t

belongs to W 2,p(Ω0) and vanishes on ∂Ω× (−1, 1) in the sense of trace. Furthermore,

L0v = cosσ1/2t (Lu− σu) .

By global estimate, we have for Ω′ = Ω× (−ϵ, ϵ), 0 < ϵ ≤ 1/2, we get

∥Dttu∥p;Ω′ ≤ C
(
∥Lu− σu∥p;Ω + ∥u∥p;Ω

)
,

where C depends on quantities that are described before. But now, taking ϵ = π/3σ1/2, we
have

∥Dttv∥p;Ω′ = σ ∥v∥p;Ω′

≥ σ cos(σ1/2ϵ)(2ϵ)1/p ∥u∥p;Ω

≥ 1

2

(
2π

3

)1/p

σ1−1/2p ∥u∥p;Ω ,

so that if σ is sufficiently large

∥u∥p;Ω ≤ C ∥Lu− σu∥p;Ω . (A.2.26)

The desired estimate follows from global estimates.

A.3 Schauder Theory

A.3.1 Symbols

Let x0 be a point in Rn, and f a function defined on a bounded set D containing x0. If
0 < α < 1, we say that f is Hölder continuous with exponent α at x0 if the quantity

[f ]α;x0
= sup

D

|f(x)− f(x0)|
|x − x0|α

<∞.

The notion of Hölder continuity is immediately extended to the whole of D:

f is uniformly Hölder continuous if [f ]α;D = sup
x,y∈D

x̸=y

|f(x)− f(y)|
|x − y|α <∞.
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On the other hand, f is called locally uniformly Hölder continuous if it is uniformly Hölder
continuous on compact subsets of D. For Ω ⊂ Rn an open set, we define the Hölder spaces
Ck,α(Ω̄) (Ck,α(Ω)) as the subspaces of Ck(Ω̄) (Ck(Ω)) consisting of functions whose k-th
derivatives are (locally) uniformly Hölder continuous with exponent α in Ω. For simplicity,
we write

C0,α(Ω) = Cα(Ω), C0,α(Ω̄) = Cα(Ω̄);

Ck,0(Ω) = Ck(Ω), Ck,0(Ω̄) = Ck(Ω̄).

Moreover, Ck,α
0 (Ω) is defined to be the subspace of Ck,α(Ω) composed of functions with

compact supports in Ω.
Now we set

[u]k,α;Ω = [Dku]α;Ω = sup
|β|=k

[Dβu]α;Ω, (A.3.1)

and the related norms

∥u∥Ck,α(Ω̄) = |u|k,α;Ω = ∥u∥Ck(Ω̄) + [u]k,α;Ω. (A.3.2)

The spaces Ck,α(Ω̄) equipped with these norms are Banach.
To work with interior estimates we introduce certain interior norms which will be useful

later. For x,y ∈ Ω, which is a proper open subset of Rn, let us write dx = dist(x, ∂Ω),
dx,y = min(dx, dy). We define for u ∈ Ck(Ω), Ck,α(Ω) the following quantities

[u]∗k,0;Ω = [u]∗k;Ω = sup
x∈Ω
|β|=k

dkx|Dβu(x)|, k = 1, 2, . . . ;

|u|∗k,0;Ω = |u|∗k;Ω =
k∑

j=0

[u]∗j;Ω;

[u]∗k,α;Ω = sup
x,y∈Ω
x̸=y

dk+α
x,y

|Dβu(x)−Dβu(y)|
|x − y|α , 0 < α ≤ 1;

|u|∗k,α;Ω = |u|∗k;Ω + [u]∗k,α;Ω.

(A.3.3)

In this notation,
[u]∗0;Ω = |u|∗0;Ω = |u|0;Ω.

We note that |u|∗k;Ω and |u|∗k,α;Ω are norms on the subspaces of Ck(Ω) and Ck,α(Ω) respectively
for which they are finite. If Ω′ ⊂⊂ Ω and σ = dist(Ω′, ∂Ω), then

min(1, σk+α)|u|k,α;Ω′ ≤ |u|∗k,α;Ω. (A.3.4)

To develop a global theory we need to introduce some quantities that involve boundary
values, and here we simply start with Ω some proper open subset of Rn

+ with open boundary
portion T on xn = 0. For x,y ∈ Ω let us write

d̄x = dist(x, ∂Ω\T ), d̄x,y = min(d̄x, d̄y).
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The quantities are:

[u]∗k,0;Ω∪T = [u]∗k;Ω∪T = sup
x∈Ω
|β|=k

d̄kx|Dβu(x)|, k = 0, 1, 2, . . . ;

|u|∗k,0;Ω∪T = |u|∗k;Ω∪T =
k∑

j=0

[u]∗j;Ω∪T ;

[u]∗k,α;Ω∪T = sup
x,y∈Ω
|β|=k

d̄k+α
x,y

|Dβu(x)−Dβu(y)|
|x − y|α , 0 < α ≤ 1;

|u|∗k,α;Ω∪T = |u|∗k;Ω∪T + [u]∗k,α;Ω∪T ;

|u|(k)0,α;Ω∪T = sup
x∈Ω

d̄kx|u(x)|+ sup
x,y∈Ω

d̄k+α
x,y

|u(x)− u(y)|
|x − y|α .

(A.3.5)

A.3.2 Hölder Estimates—the Preliminaries

Hölder Interior Estimates

In this subsection, we consider a special case–Poisson’s equation: ∆u = f .

Lemma A.3.1. Let f be bounded and integrable in Ω, and let w be the Newtonian potential
of f . Then w ∈ C1(Rn) and for any x ∈ Ω,

Diw(x) =
∫
Ω

DiΓ(x − y)f(y)dy, i = 1, . . . , n. (A.3.6)

证明. By the formulation of DiΓ, the function

v(x) =
∫
Ω

DiΓ(x − y)f(y)dy

is well-defined. To show that v = Diw, we fix a function η ∈ C1(R) satisfying 0 ≤ η ≤ 1, 0 ≤
η′ ≤ 2, η(t) = 0 for t ≤ 1, η(t) = 1 for t ≥ 2 and define for ϵ > 0,

wϵ(x) =
∫
Ω

Γηϵf(y)dy, Γ = Γ(x − y), ηϵ = η(|x − y|/ϵ).

Clearly, wϵ ∈ C1(Rn) and

|v(x)−Diwϵ(x)| =
∣∣∣∣∫

|x−y|≤2ϵ

Di [(1− ηϵ)Γ] f(y)dy
∣∣∣∣

≤ ∥f∥∞ ×
∫
|x−y|≤2ϵ

(
|DiΓ|+

2

ϵ
|Γ|
)
dy

≤ ∥f∥∞ ×

 2nϵ
n−2

for n > 2

4ϵ(1 + | log 2ϵ|) for n = 2.

The results then follow from the above estimates.

Lemma A.3.2. Let f be bounded and locally Hölder continuous (with exponent α ≤ 1) in
Ω, and let w be the Newtonian potential of f . Then w ∈ C2(Ω), ∆w = f in Ω, and for any
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x ∈ Ω,

Dijw(x) =
∫
Ω0

DijΓ(x − y)(f(y)− f(x))dy

− f(x)
∫
∂Ω0

DiΓ(x − y)νj(y)dsy, i, j = 1, . . . , n.

(A.3.7)

Here Ω0 is any domain containing Ω for which the divergence theorem holds and f is extended
to vanish outside Ω.

证明. The proof is similar to that of the preceding lemma.

Corollary A.3.1. Let Ω be a bounded domain and suppose that each point of ∂Ω is regular
(with respect to the Laplacian). Then if f is bounded and locally Hölder continuous on Ω,
the classical Dirichlet problem: ∆u = f in Ω, u = ϕ on ∂Ω, is uniquely solvable for any
continuous boundary values ϕ.

The following estimates are the starting points of the future theory.

Lemma A.3.3. Let B1 = BR(x0), B2 = B2R(x0) be concentric balls in Rn. Suppose f ∈
Cα(B2), 0 < α < 1, and let w be the Newtonian potential of f in B2. Then w ∈ C2,α(B1)

and
|D2w|0;B1

+Rα[D2w]α;B1
≤ C(|f |0;B2

+Rα[f ]α;B2
), (A.3.8)

where C = C(n, α).

证明. For any x ∈ B1, we have by formula (A.3.7),

Dijw(x) =
∫
B2

DijΓ(x − y)(f(y)− f(x))dy − f(x)
∫
∂B2

DiΓ(x − y)νj(y)dsy,

and so by direct computation

|Dijw(x)| ≤
|f(x)|
nωn

R1−n

∫
∂B2

dsy +
[f ]α;x
ωn

∫
B2

|x − y|α−ndy

≤ 2n−1|f(x)|+ n

α
(3R)α[f ]α;x

≤ C1 (|f(x)|+Rα[f ]α;x) ,

(A.3.9)

where C1 = C1(n, α).
Next, for any other point x̄ ∈ B1 we have again by (A.3.7),

Dijw(x̄) =
∫
B2

DijΓ(x̄ − y)(f(y)− f(x̄))dy − f(x̄)
∫
∂B2

DiΓ(x̄ − y)νj(y)dsy.

Writing δ = |x − x̄|, ξ = (x + x̄)/2, we consequently obtain by subtraction

Dijw(x̄)−Dijw(x) = f(x)I1 + (f(x)− f(x̄))I2 + I3 + I4

+ (f(x)− f(x̄))I5 + I6,
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where the integrals I1, I2, I3, I4, I5 and I6 are given by

I1 =

∫
∂B2

(DiΓ(x − y)−DiΓ(x̄ − y)) νj(y)dsy

I2 =

∫
∂B2

DiΓ(x̄ − y)νj(y)dsy

I3 =

∫
Bδ(ξ)

DijΓ(x − y)(f(x)− f(y))dy

I4 =

∫
Bδ(ξ)

DijΓ(x̄ − y)(f(y)− f(x̄))dy

I5 =

∫
B2\Bδ(ξ)

DijΓ(x − y)dy

I6 =

∫
B2\Bδ(ξ)

(DijΓ(x − y)−DijΓ(x̄ − y)) (f(x̄)− f(y)) dy.

The estimation of these integrals can be achieved as follows:

•

|I1| ≤ |x − x̄|
∫
∂B2

|DDiΓ(x̂ − y)|dsy for some x between x and x̄,

≤ n22n−1|x − x̄|
R

, since |x̂ − y| ≥ R, ∀y ∈ ∂B2,

≤ n22n−α

(
δ

R

)α

, since δ = |x − x̄| < 2R.

•
|I2| ≤

1

nωn

R1−n

∫
∂B2

dsy = 2n−1.

•

|I3| ≤
∫
Bδ(ξ)

|DijΓ(x − y)||f(x)− f(y)|dy

≤ 1

ωn

[f ]α;x

∫
B3δ/2

|x − y|α−ndy

≤ n

α

(
3δ

2

)α

[f ]α;x.

•
|I4| ≤

n

α

(
3δ

2

)α

[f ]α;x̄, as in the estimation of I3.

• Integration by parts gives

|I5| =
∣∣∣∣∫

∂(B2\Bδ(ξ))

DiΓ(x − y)νj(y)dsy

∣∣∣∣
≤
∣∣∣∣∫

∂B2

DiΓ(x − y)νj(y)dsy

∣∣∣∣+ ∣∣∣∣∫
∂Bδ(ξ)

DiΓ(x − y)νj(y)dsy

∣∣∣∣
≤ 2n−1 +

1

nωn

(
δ

2

)1−n ∫
∂Bδ(ξ)

dsy = 2n.

126



•

|I6| ≤ |x − x̄|
∫
B2\Bδ(ξ)

|DDijΓ(x̂ − y)||f(x̄)− f(y)|dy

≤ cδ

∫
|y−ξ|≥δ

|f(x̄)− f(y)|
|x̂ − y|n+1

dy, c = n(n+ 5)/ωn

≤ cδ[f ]α;x̄

∫
|y−ξ|≥δ

|x̄ − y|α
|x̄ − y|n+1

dy,

≤ c

(
3

2

)α

2n+1δ[f ]α;x̄

∫
|y−ξ|≥δ

|ξ − y|α−n−1dy, ◦

≤ n2(n+ 5)

1− α
2n+1

(
3

2

)α

δα[f ]α;x̄,

where “◦” holds because |x̄ − y| ≤ 3
2
|ξ − y| ≤ 3|x̂ − y|.

Now, collecting terms we have

|Dijw(x̄)−Dijw(x)| ≤ C2

(
R−α|f(x)|+ [f ]α;x + [f ]α;x̄

)
|x − x̄|α, (A.3.10)

where constant C2 depends only on n and α.

Now, for bounded domains Ω with d = diamΩ we define non-dimensional norms on Ck(Ω̄)

and Ck,α(Ω̄)

∥u∥′Ck(Ω̄) = |u|′k;Ω =
k∑

j=0

dj [u]j,0;Ω;

∥u∥′Ck,α(Ω̄) = |u|′k;Ω + dk+α[Dku]α;Ω.

Theorem A.3.1. Let Ω be a domain in Rn and let u ∈ C2(Ω), f ∈ Cα(Ω), satisfy Poisson’s
equation ∆u = f in Ω. Then u ∈ C2,α(Ω) and for any two concentric balls B1 = BR(x0),
B2 = B2R(x0) ⊂⊂ Ω we have

|u|′2,α;B1
≤ C(|u|0;B2

+R2|f |′0,α;B2
), (A.3.11)

where C = C(n, α).

证明. We can write for x ∈ B2, u(x) = v(x) + w(x), where v is harmonic in B2 and w is the
Newtonian potential of f in B2. By previous estimates and the representation of Dw in terms
of f we have

R|Dw|0,B1
+R2|D2w|′0,α;B1

≤ CR2|f |′0,α;B2
.

Since v is harmonic, we have

R|Dv|0,B1
+R2|D2v|′0,α;B1

≤ C|v|0;B2
≤ C(|u|0;B2

+R2|f |0,B2
).

The last inequality reuses the formula v = u− w.
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Theorem A.3.2. (Hölder Interior Estimates) Let u ∈ C2(Ω), f ∈ Cα(Ω) satisfy ∆u = f

in an open set Ω of Rn. Then

|u|∗2,α;Ω ≤ C(|u|0;Ω + |f |(2)0,α;Ω), (A.3.12)

where C = C(n, α).

证明. If either of |u|0;Ω or |f |(2)0,α;Ω is infinite, we are done. Otherwise for x ∈ Ω, R = dx/3,
B1 = BR(x), B2 = B2R(x), we have for any first derivative Du and second derivative D2u

dx|Du(x)|+ d2x|D2u(x)| ≤ (3R)|Du|0;B1
+ (3R)2|D2u|0;B1

≤ C(|u|0;B2
+R2|f |′0,α;B2

)

≤ C(|u|0;Ω + |f |(2)0,α;Ω).

Hence we obtain
|u|∗2;Ω ≤ C(|u|0;Ω + |f |(2)0,α;Ω).

To estimate [u]∗2,α;Ω we let x,y ∈ Ω with dx ≤ dy. Then

d2+α
x,y

|D2u(x)−D2(y)|
|x − y|α ≤ (3R)2+α[D2u]α;B1

+ 3α(3R)2(|D2u(x)|+ |D2u(y)|)

≤ C(|u|0;B2
+R2|f |′0,α;B2

) + 6[u]′2;Ω

≤ C(|u|0;Ω + |f |(2)0,α;Ω).

Hölder Boundary Estimates near Hyperplane boundary portion

In what follows, Rn
+ will denote the half-space, xn > 0, and T the hyperplane, xn = 0;

B2 = B2R(x0), B1 = BR(x0) with center x0 ∈ Rn
+, and we let B+

2 = B2 ∩Rn
+, B+

1 = B1 ∩Rn
+.

Lemma A.3.4. Let f ∈ Cα(B+
2 ), and let w be the Newtonian potential of f in B+

2 . Then
w ∈ C2,α(B+

1 ) and
|D2w|′

0,α;B+
1
≤ C|f |′

0,α;B+
2

(A.3.13)

where C = C(n, α).

证明. We assume that B2 intersects T since otherwise the result is already discussed before.
The integral representation (A.3.7) of Dijw still holds for Ω = B+

2 . If either i or j ̸= n, then
the portion of the boundary integral∫

∂B+
2

DiΓ(x − y)νj(y)dsy

on T vanishes since νi or νj = 0 there. The previous methods in estimating Dijw (i or j ̸= n)
still work. Finally Dnnw can be estimated from the equation ∆w = f and the estimates on
Dkkw for k = 1, . . . , n− 1.
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Theorem A.3.3. Let u ∈ C2(B+
2 ) ∩ C0(B+

2 ), f ∈ Cα(B+
2 ), satisfy ∆u = f in B+

2 , u = 0 on
T . Then u ∈ C2,α(B+

1 ) and we have

|u|′
2,α;B+

1
≤ C(|u|0,α;B+

2
+R2|f |′

0,α;B+
2
) (A.3.14)

where C = C(n, α).

证明. Let x′ = (x1, . . . , xn−1), x∗ = (x′,−xn) and define

f∗(x) = f∗(x′, xn) =

f(x′, xn) if xn ≥ 0

f(x′,−xn) if xn ≤ 0.

We assume that B2 intersects T or we are done. We set B−
2 = {x ∈ Rn ; x∗ ∈ B+

2 } and
D = B+

2 ∪B−
2 ∪ (B2 ∩ T ). Then f∗ ∈ Cα(D̄) and |f∗|′0,α;D ≤ 2|f |′

0,α;B+
2

. Now, defining

w(x) =
∫
B+

2

[Γ(x − y)− Γ(x∗ − y)] f(y)dy

=

∫
B+

2

[Γ(x − y)− Γ(x − y∗)] f(y)dy,
(A.3.15)

we have w(x′, 0) = 0 and ∆w = f in B+
2 . Noting that∫

B+
2

Γ(x − y∗)f(y)dy =

∫
B−

2

Γ(x − y)f∗(y)dy,

we then obtain
w(x) = 2

∫
B+

2

Γ(x − y)f(y)dy −
∫
D

Γ(x − y)f∗(y)dy.

Letting w∗(x) =
∫
D
Γ(x − y)f∗(y)dy, we have

|D2w∗|′
0,α;B+

1
≤ C|f∗|′0,α;D ≤ 2C|f |′

0,α;B+
2
.

Combining this with previous lemma, we obtain

|D2w∗|′
0,α;B+

1
≤ C|f |′

0,α;B+
2
. (A.3.16)

Now let v = u−w. Then ∆v = 0 in B+
2 and v = 0 on T . By reflection v may be extended to

a harmonic function on B2 and hence the desired estimate follows from the interior derivative
estimate for harmonic functions.

We can now state:

Theorem A.3.4. Let Ω be an open set in Rn
+ with a boundary portion T on xn = 0, and let

u ∈ C2(Ω) ∩ C0(Ω ∪ T ), f ∈ Cα(Ω ∪ T ) satisfy ∆u = f in Ω, u = 0 on T . Then

|u|∗2,α;Ω∪T ≤ C(|u|0;Ω + |f |(2)0,α;Ω∪T ), (A.3.17)

where C = C(n, α).
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Theorem A.3.5. Let B be a ball in Rn and u ∈ C2(B) ∩ C0(B̄), f ∈ Cα(B̄), ∆u = f in B,
u = 0 on ∂B. Then u ∈ C2,α(B̄).

证明. By a translation we may assume that ∂B passes through the origin. The inversion
mapping x 7→ x∗ = x/|x|2 is a homeomorphic, smooth mapping of Rn\{0} onto itself which
maps B onto a half-space, B∗. Furthermore, the Kelvin transform of u defined by

v(x) = |x|2−nu

(
x
|x|2

)
(A.3.18)

belongs to C2(B∗) ∩ C0(B∗) and satisfies

∆x∗v(x∗) = |x∗|−n−2∆xu(x), x∗ ∈ B∗, x ∈ B

= |x∗|−n−2f

(
x∗

|x∗|2

)
.

(A.3.19)

Hence we may now apply the preceding estimates. Since by translation any point of ∂B can
be taken for the origin we obtain u ∈ C2,α(B̄).

A.3.3 Schauder Interior Estimates

We denote by Lu = f the equation

Lu = aijDiju+ biDiu+ cu = f, aij = aji,

where the coefficients and f are defined in an open set Ω ⊂ Rn and the operator L is strictly
elliptic if otherwise stated:

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn,

for some positive constant λ.
To obtain estimates of the interior norm |u|∗2,α;Ω of solutions of Lu = f in Ω, it suffices to

bound only |u|0;Ω and the seminorm [u]∗2,α;Ω. That this is so is a consequence of the following
interpolation inequalities: Let u ∈ C2,α(Ω), where Ω is an open subset of Rn. Then for any
ϵ > 0 there is a constant C = C(ϵ) such that

[u]∗j,β;Ω ≤ C|u|0;Ω + ϵ[u]∗2,α;Ω, (A.3.20)

|u|∗j,β;Ω ≤ C|u|0;Ω + ϵ[u]∗2,α;Ω, (A.3.21)

where j = 0, 1, 2, 0 ≤ α, β ≤ 1 and j + β < 2 + α (see Appendix 1 in Chapter 6 of Gilbarg-
Trudinger).

For future convenience we define the following quantities on the spaces Ck(Ω), Ck,α(Ω).
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For σ a real number and k a nonnegative integer we define

[f ]
(σ)
k,0;Ω = [f ]

(σ)
k;Ω = sup

x∈Ω
|β|=k

dk+σ
x |Dβf(x)|;

[f ]
(σ)
k,α;Ω = sup

x,y∈Ω
|β|=k

dk+α+σ
x,y

|Dβf(x)−Dβf(y)|
|x − y|α , 0 < α ≤ 1;

|f |(σ)k;Ω =
k∑

j=0

[f ]
(σ)
j;Ω;

|f |(σ)k,α;Ω = |f |(σ)k;Ω + [f ]
(σ)
k,α;Ω.

(A.3.22)

It is easy to verify that

|fg|(σ+τ)
0,α;Ω ≤ |f |(σ)0,α;Ω|g|

(τ)
0,α;Ω, for σ + τ ≥ 0. (A.3.23)

We now establish the basic Schauder interior estimates.

Theorem A.3.6. (Schauder Interior Estimates) Let Ω be an open subset of Rn, and let
u ∈ Ck,α(Ω) be a bounded solution in Ω of the equation Lu = f , where f ∈ Cα(Ω) and there
are positive constants λ,Λ such that

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn,

and
|aij |(0)0,α;Ω, |bi|

(1)
0,α;Ω, |c|

(2)
0,α;Ω ≤ Λ.

Then
|u|∗2,α;Ω ≤ C(|u|0;Ω + |f |(2)0,α;Ω), (A.3.24)

where C = C(n, α, λ,Λ).

证明. By interpolation inequalities, it suffices to proof the inequality for [u]∗2,α;Ω and a further
observation shows that we only have to prove the latter for compact subsets of Ω. Namely,
let {Ωi} be a sequence of open subsets of Ω such that Ωi ⊂ Ωi+1 ⊂⊂ Ω and ∪Ωi = Ω. We
have that [u]∗2,α;Ωi

is finite for each i. Now, if the desired inequality is true for Ωi we have for
x,y ∈ Ω and sufficiently large i and any second derivative D2u

(d(i)x,y)
2+α |D2u(x)−D2u(y)|

|x − y|α ≤ [u]∗2,α;Ωi

≤ C(|u|0;Ωi
+ |f |(2)0,α;Ωi

)

≤ C(|u|0;Ω + |f |(2)0,α;Ω),

where d(i)x,y = min(dist(x, ∂Ωi), dist(y, ∂Ωi)). Sending i→ ∞, we obtain the inequality

d2+α
x,y

|D2u(x)−D2u(y)|
|x − y|α ≤ C(|u|0;Ω + |f |(2)0,α;Ω).

131



Now, we may without losing generality assume that [u]∗2,α;Ω is finite. For notational conve-
nience we use C to be a universal constant that only depend on n, α, λ,Λ.

Let x0,y0 be any two distinct points in Ω and suppose dx0
= dx0,y0

. Let µ ≤ 1/2 be a
positive constant to be fixed later, and set d = µdx0

, B = Bd(x0). We rewrite Lu = f in the
form

aij(x0)Diju = (aij(x0)− aij(x))Diju− biDiu− cu+ f ≡ F (x), (A.3.25)

and we consider this as an equation in B with constant coefficients aij(x0). Applying Hölder
estimates with a proper linear transformation to this equation we know that if y0 ∈ Bd/2(x0),
then for any second order derivative D2u(

d

2

)2+α |D2u(x0)−D2u(y0)|
|x0 − y0|α

≤ C
(
|u|0;B + |F |(2)0,α;B

)
;

and thus
d2+α

x0

|D2u(x0)−D2u(y0)|
|x0 − y0|α

≤ C

µ2+α

(
|u|0;B + |F |(2)0,α;B

)
.

On the other hand, if |x0 − y0| ≥ d/2,

d2+α
x0

|D2u(x0)−D2u(y0)|
|x0 − y0|α

≤
(
2

µ

)α [
d2x0

|D2u(x0)|+ d2y0
|D2u(y0)|

]
≤ 4

µα
[u]∗2;Ω.

Therefore, combining these inequalities we have

d2+α
x0

|D2u(x0)−D2u(y0)|
|x0 − y0|α

≤ C

µ2+α

(
|u|0;B + |F |(2)0,α;B

)
+

4

µα
[u]∗2;Ω. (A.3.26)

We proceed to estimate |F |(2)0,α;B in terms of |u|0;Ω and [u]∗2,α;Ω. We have

|F |(2)0,α;B ≤
∑
i,j

|(aij(x0)− aij(x))Diju|(2)0,α;B + |
∑
i

biDiu|(2)0,α;B

+ |cu|(2)0,α;B + |f |(2)0,α;B.

(A.3.27)

It will be useful in estimating these terms to have the following inequality. Recalling that for
all x ∈ B, dx > (1− µ)dx0

≥ dx/2, we have for g ∈ Cα(Ω)

|g|(2)0,α;B ≤ d2|g|0;B + d2+α[g]α;B

≤ µ2

(1− µ)2
[g]

(2)
0;Ω +

µ2+α

(1− µ)2+α
[g]

(2)
0,α;Ω

≤ 4µ2[g]
(2)
0;Ω + 8µ2+α[g]

(2)
0,α;Ω

≤ 8µ2|g|(2)0,α;Ω.

(A.3.28)

By (A.3.23) and the above inequality, we obtain

|(a(x0)− a(x))D2u|(2)0,α;B ≤ |a(x0)− a(x)|(0)0,α;B|D2u|(2)0,α;B

≤ |a(x0)− a(x)|(0)0,α;B(4µ
2[u]

(2)
2;Ω + 8µ2+α[u]

(2)
2,α;Ω),
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where we write a(·)D2u = aij(·)Diju. Since

|a(x0)− a(x)|(0)0,α;B ≤ sup
x∈B

|a(x0)− a(x)|+ dα[a]α;B ≤ 4Λµα,

we arrive at the following estimate for the principal term in (A.3.27),

|(aij(x0)− aij(x))Diju|(2)0,α;B ≤ 32n2Λµ2+α
(
[u]∗2;Ω + µα[u]∗2,α;Ω

)
≤ 32n2Λµ2+α

(
C(µ)|u|0;Ω + 2µα[u]∗2,α;Ω

)
.

(A.3.29)

The last inequality is obtained by setting ϵ = µα in the interpolation inequality.
Writing bDu = biDiu for each i, we obtain

|bDu|(2)0,α;B ≤ 8µ2|bDu|(2)0,α;Ω

≤ 8µ2|b|(1)0,α;Ω|Du|
(1)
0,α;Ω

≤ 8µ2Λ|u|∗1,α;Ω
≤ 8µ2Λ

(
C(µ)|u|0;Ω + µ2α[u]∗2,α;Ω

)
.

(A.3.30)

The last inequality is obtained by setting ϵ = µ2α in the interpolation inequality.
Similarly, we have

|cu|(2)0,α;B ≤ 8µ2|c|(2)0,α;Ω|u|
(0)
0,α;Ω

≤ 8Λµ2
(
C(µ)|u|0;Ω + µ2α[u]∗2,α;Ω

)
.

(A.3.31)

Finally,

|f |(2)0,α;B ≤ 8µ2|f |(2)0,α;Ω. (A.3.32)

Letting C denote constant that depends only on n, α, λ,Λ and C(µ) constants depending also
on µ, we find

|F |(2)0,α;B ≤ Cµ2+2α[u]∗2,α;Ω + C(µ)(|u|0;Ω + |f |(2)0,α;Ω).

Inserting this into the right member of (A.3.26), and using interpolation with ϵ = µ2α to
estimate [u]∗2;Ω, we obtain

d2+α
x0,y0

|D2u(x0)−D2u(y0)|
|x0 − y0|α

≤ Cµα[u]∗2,α;Ω + C(µ)
(
|u|0;Ω + |f |(2)0,α;Ω

)
.

Taking the supremum over all x0,y0 ∈ Ω, we obtain

[u]∗2,α;Ω ≤ Cµα[u]∗2,α;Ω + C(µ)
(
|u|0;Ω + |f |(2)0,α;Ω

)
.

Then we arrive at the desired inequality if we set µ to be small.

It is usually adequate to know equicontinuity of solutions and their derivatives up to
second order on compact subsets.
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Corollary A.3.2. Let u ∈ C2,α(Ω), f ∈ Cα(Ω̄) satisfy Lu = f in a bounded domain Ω where
L is strictly elliptic and its coefficients are Cα(Ω̄). Then if Ω′ ⊂⊂ Ω with dist(Ω′, ∂Ω) ≥ d,
there is a constant C such that

d|Du|0;Ω′ + d2|D2u|0;Ω′ + d2+α[D2u]α;Ω′ ≤ C (|u|0;Ω + |f |0,α;Ω) , (A.3.33)

where C depends only on n, α, λ,Λ, diam Ω.

Remark: An immediate consequence is that uniformly bounded solutions to the equation
Lu = f are equicontinuous with their first and second derivatives on compact subsets. This
is also true for any family of equations with close constants listed in the above corollary.

A.3.4 Boundary and Global Estimates

Definition A.3. A bounded domain Ω in Rn and its boundary are of class Ck,α, 0 ≤ α ≤ 1,
if at each point x0 ∈ ∂Ω there is a ball B = B(x0) and a one-to one mapping ψ of B onto
D ⊂ Rn such that

(i) ψ(B ∩ Ω) ⊂ Rn
+;

(ii) ψ(B ∩ ∂Ω) ⊂ ∂Rn
+;

(iii) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).

A domain Ω will be said to have a boundary portion T ⊂ ∂Ω of class Ck,α if at each point
x0 ∈ T there is a ball centered at it, in which the above conditions are satisfied. We shall say
that the diffeomorphism ψ straightens the boundary near x0.

We note in particular that Ω is a Ck,α domain if each point of ∂Ω has a neighborhood in
which ∂Ω is the graph of a Ck,α function of n− 1 of the coordinates x1, . . . , xn. The converse
is also true for k ≥ 1.

A function ϕ defined on a Ck,α boundary portion T of a domain Ω will be said to be in
class Ck,α(T ) if ϕ ◦ ψ−1

x0
∈ Ck,α(D ∩ ∂Rn

+) for each x0 ∈ T . It is important to note that if ∂Ω
is of Ck,α (k ≥ 1), then a function ϕ ∈ Ck,α(∂Ω) can be extended to a function in Ck,α(Ω̄)

(see Appendix 2 in Chapter 6 of Gilbarg-Trudinger). Conversely, any function in Ck,α(Ω̄) has
boundary values in Ck,α(∂Ω).

It is also possible to define a boundary norm on Ck,α(∂Ω), in various ways. For example,
if ϕ ∈ Ck,α(∂Ω), let Φ denote an extension of ϕ to Ω̄ and define

∥ϕ∥Ck,α(∂Ω) = inf
Φ

∥Φ∥Ck,α(Ω̄) .

Equipped with this norm, the space Ck,α(∂Ω) becomes Banach.
In obtaining boundary estimates for Lu = f in domains with a C2,α (α > 0) boundary

portion we first establish such an estimate in domains with a hyperplane boundary portion.
Let us first introduce the corresponding interpolation inequality: Let Ω be and open subset
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of Rn
+ with a boundary portion T on xn = 0 and assume u ∈ C2,α(Ω∪T ). Then for any ϵ > 0

and some constant C(ϵ) we have

[u]∗j,β;Ω∪T ≤ C|u|0;Ω + ϵ[u]∗2,α;Ω∪T , (A.3.34)

|u|∗j,β;Ω∪T ≤ C|u|0;Ω + ϵ[u]∗2,α;Ω∪T , (A.3.35)

where j = 0, 1, 2, 0 ≤ α, β ≤ 1 and j + β ≤ 2 + α. These inequalities are proved in Appendix
1 in Chapter 6 of Gilbarg-Trudinger.

Lemma A.3.5. Let Ω be an open subset of Rn
+, with a boundary portion T on xn = 0.

Suppose that u ∈ C2,α(]co ∪ T ) is a bounded solution in Ω of Lu = f satisfying the boundary
condition u = 0 on T . In addition we assume

|aij |(0)0,α;Ω∪T , |bi|
(1)
0,α;Ω∪T , |c|

(2)
0,α;Ω∪T ≤ Λ; |f |(2)0,α;Ω∪T <∞. (A.3.36)

Then
|u|∗2,α;Ω∪T ≤ C

(
|u|0;Ω + |f |(2)0,α;Ω∪T

)
, (A.3.37)

where C = C(n, α, λ,Λ).

证明. The proof is identical with that of the interior estimates if we replace dx and the
interpolation inequalities by d̄x and the one exhibited above respectively.

In order to extend the preceding lemma to domains with a curved boundary, we introduce
the relevant seminorms and norms, in obvious generalizations of (A.3.5). Let Ω be an open
set in Rn with Ck,α boundary portion T . For x,y ∈ Ω let us write

d̄x = dist(x, ∂Ω\T ), d̄x,y = min(d̄x, d̄y).

The quantities are:

[u]∗k,0;Ω∪T = [u]∗k;Ω∪T = sup
x∈Ω
|β|=k

d̄kx|Dβu(x)|, k = 0, 1, 2, . . . ;

|u|∗k,0;Ω∪T = |u|∗k;Ω∪T =
k∑

j=0

[u]∗j;Ω∪T ;

[u]∗k,α;Ω∪T = sup
x,y∈Ω
|β|=k

d̄k+α
x,y

|Dβu(x)−Dβu(y)|
|x − y|α , 0 < α ≤ 1;

|u|∗k,α;Ω∪T = |u|∗k;Ω∪T + [u]∗k,α;Ω∪T ;

|u|(k)0,α;Ω∪T = sup
x∈Ω

d̄kx|u(x)|+ sup
x,y∈Ω

d̄k+α
x,y

|u(x)− u(y)|
|x − y|α .

(A.3.38)

Let Ω be a bounded domain with Ck,α boundary portion T , k ≥ 1, 0 ≤ α ≤ 1. Suppose
that Ω ⊂⊂ D, where D is a domain that is mapped by a Ck,α diffeomorphism ψ onto D′.
Letting Ω′ = ψ(Ω) and ψ(T ) = T ′, we can define all the quantities described before with
respect to Ω′ and T ′. It is not hard to show that the transformation x′ = ψ(x) induces a
mapping of functions u(x) → u(ψ−1ψ(x)) =: ũ(x′), and the corresponding quantities of u and
ũ are equivalent in the sense that K−1|ũ|, ≤ |u|, ≤ K|ũ|, with K depending on ψ and Ω.
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Lemma A.3.6. Let Ω be a C2,α domain in Rn, and let u ∈ C2,α(Ω̄) be a solution of Lu = f

in Ω, u = 0 on ∂Ω, where f ∈ Cα(Ω̄). It is assumed that the coefficients of L is strictly
elliptic and

|aij |0,α;Ω, |bi|0,α;Ω, |c|0,α;Ω ≤ Λ.

Then for some δ there is a ball B = Bδ(x0) at each point x0 ∈ ∂Ω such that

|u|2,α;B∩Ω ≤ C (|u|0;Ω + |f |0,α;Ω) , (A.3.39)

where C = C(n, α, λ,Λ,Ω).

证明. By the definition of a C2,α domain, at each point x0 ∈ ∂Ω there is a neighborhood
N of x0 and a C2,α diffeomorphism that straightens the boundary in N . Let Bρ(x0) ⊂⊂ N

and set B′ = Bρ(x0) ∩ Ω, D′ = ψ(B′), T = Bρ(x0) ∩ ∂Ω ⊂ ∂B′ and T ′ = ψ(T ) ⊂ ∂D′ (T ′

is a hyperplane portion of ∂D′). Under the mapping y = ψ(x) = (ψ1(x), . . . , ψn(x)), let
ũ(y) = u(x) and L̃ũ(y) = Lu(x), where

L̃ũ ≡ ãijDijũ+ b̃iDiũ+ c̃ũ = f̃(y),

and

ãij(y) = ∂ψi

∂xr

∂ψj

∂xs
ars(x), b̃i(y) = ∂2ψi

∂xr∂xs
ars(x) + ∂ψi

∂xr
br(x),

c̃(y) = c(x), f̃(y) = f(x).

We observe that in D′

λ̄|ξ|2 ≤ ãijξiξj , ∀ξ ∈ Rn,

where λ̄ = λ/K for a suitable positive constant K depending only on the mapping ψ on B′.
It is not hard to observe that

|ãij |0,α;D′ , |b̃i|0,α;D′ , |c̃|0,α;D′ ≤ Λ̄ = KΛ; |f̃ |0,α;D′ <∞.

Thus the conditions of Lemma A.3.5 are satisfied for the equation L̃ũ = f̃ in D′ with the
hyperplane portion T ′. We can therefore assert

|ũ|∗2,α;D′∪T ′ ≤ C
(
|ũ|0;D′ + |f̃ |(2)0,α;D′∪T ′

)
,

where the constant C = C(n, α, λ̄, Λ̄). It follows from the (semi)norm equivalence under the
mapping ψ that

|u|∗2,α;B′∪T ≤ C
(
|u|0;B′ + |f |(2)0,α;B′∪T

)
≤ C (|u|0;B′ + |f |0,α;B′)

≤ C (|u|0;Ω + |f |0,α;Ω) ,

where C now depends on n, α, λ,Λ and B′. Letting B′′ = Bρ/2(x0) ∩ Ω and observing that

min(1, (ρ/2)2+α)|u|2,α;B′′ ≤ |u|∗2,α;B′∪T ,
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we obtain

|u|2,α;B′′ ≤ C (|u|0;Ω + |f |0,α;Ω) .

The radius ρ appearing in this estimates depends essentially on x0 ∈ ∂Ω. Consider now the
collection of balls Bρ/4(x) for all x ∈ ∂Ω, we know by compactness of ∂Ω there is a finite
subcollection Bρi/4(xi), 1 ≤ i ≤ N that covers ∂Ω. Letting min(ρi/4) it’s not hard to see that
for this δ the conclusion of the lemma is true.

We remark here that the dependence of the constant C in the above lemma on the domain
Ω is through the constants K, which are essentially related to the C2,α bounds on the family
of mappings ψx, the local representations of ∂Ω near x ∈ ∂Ω. If the bounds on the mappings
ψ can be stated uniformly on the boundary, then the uniform bound K can replace Ω in the
statement of the estimate and the domain may also be unbounded.

Theorem A.3.7. (Global Schauder Estimates) Let Ω be a C2,α domain in Rn and let
u ∈ C2,α(Ω̄) be a solution of Lu = f in Ω, where f ∈ Cα(Ω̄) and the coefficients of L satisfy,
for positive constants λ,Λ

aijξiξj ≥ λ|ξ|2 ∀x ∈ Ω, ξ ∈ Rn,

and

|aij |0,α;Ω, |bi|0,α;Ω, |c|0,α;Ω ≤ Λ.

Let ϕ ∈ C2,α(Ω̄), and suppose u = ϕ on ∂Ω. Then

|u|2,α;Ω ≤ C (|u|0;Ω + |ϕ|2,α;Ω + |f |0,α;Ω) , (A.3.40)

where C = C(n, α, λ,Λ,Ω).

证明. We start with u = 0 on ∂Ω and ϕ = 0, and if this is done we set v = u− ϕ and observe
that Lv = f − Lϕ, v = 0 on ∂Ω and |Lϕ|0,α;Ω ≤ C|ϕ|2,α;Ω, then we obtain

|u|2,α;Ω ≤ |v|2,α;Ω + |ϕ|2,α;Ω ≤ C (|u|0;Ω + |ϕ|2,α;Ω + |f |0,α;Ω) .

Let x ∈ Ω. We consider the two possibilities: (i) x ∈ B0 = B2σ(x0)∩Ω for some x0 ∈ ∂Ω,
where δ = 2σ is the radius in the preceding lemma; (ii) x ∈ Ωσ = {x ∈ Ω ; distx, ∂Ω > σ}.
Using boundary estimate for (i) and interior estimate for (ii), we have

|Du(x)|+ |D2u(x)| ≤ max(C(i), C(ii))(|u|0 + |f |0,α),

where C(i) is the bound coefficients from the boundary estimate and C(ii) the interior one.
Now, let x,y be distinct points in Ω and consider the following three possibilities: (i)

x, ,y ∈ B0 for some x0; (ii) x,y ∈ Ωσ; (iii) x or y is in Ω\Ωσ but not both x and y are in
the same ball B0 for any x0 ∈ ∂Ω. These exhaust all the possibilities. Case (i) and (ii) are
addressed by the boundary and interior estimates with bound coefficients C1, C2 respectively.
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In case (iii), dist(x,y) > σ, so that

|D2u(x)−D2u(y)|
|x − y|α ≤ 1

σα

(
|D2u(x)|+ |D2u(y)|

)
≤ C3 (|u|0 + |f |0,α) .

Letting C = max(C1, C2, C3), and taking the supremum over all x,y ∈ Ω, we obtain

[D2u]α ≤ C (|u|0 + |f |0,α) .

Combining this estimate with the bound for |u|2, we are done.

Remark: The typical application is that for any bounded set of solutions to a family of
equations is also bounded in the space C2,α(Ω̄) and hence precompact in C2(Ω̄).

A.4 de Giorgi-Nash-Moser Estimate

In this section we review the proof of the famous de Giorgi-Nash-Moser estimate. Of
concern is the regularity problem of a weak solution u ∈ H1(Ω) to the equation

∂i
(
aij(x)∂ju(x)

)
= 0, x ∈ Ω,

i.e. ∫
Ω

aijuiϕj = 0 (A.4.1)

for all ϕ ∈ H1
0 (Ω). Here for some λ > 0

λ−1|ξ|2 ≤ aij(x)ξiξj ≤ λ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn.

Let Ω′ ⊂⊂ Ω be a subdomain and δ = dist(Ω′, ∂Ω). We have the following result.

Theorem A.4.1. (de Giorgi-Nash-Moser) If
∫
Ω
|∇u|2 ≤ 1, then there are two positive

constants α, β depending only on n, λ and δ such that

|u(x)− u(y)| ≤ β|x − y|α, for x,y ∈ Ω′. (A.4.2)

Remark: Recall that this result was partially covered by the interior H2 estimate in Chapter
4. In that chapter, we assumed that aij ∈ C1(Ω) ∩ L∞(Ω), and obtained the following
estimates

∥u∥H2(Ω′) ≤ C ∥u∥L2(Ω) .

By Sobolev Imbedding theorem, we have when n ≤ 3, k−n/p = 2−n/2 > 0, and so for some
1 ≥ α > 0, H2(Ω′) ↪→ Cα(Ω′). It is evident to notice that de Giorgi-Nash-Moser estimate
extends the result in every sense. The proof is mainly from (J. Moser 1960).
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A.4.1 Subsolutions and Moser Iteration

It is well-known that the weak solution v = u of (A.4.1) satisfy an inequality for σ, ρ > 0,∫
Bρ(x)

|∇v|2 ≤ 4λ4

σ2

∫
Bρ+σ(x)

v2, (A.4.3)

whenever the ball Bρ+σ(x) is entirely in Ω (this can be done by using a proper auxiliary
function ϕ = η2u). A crucial observation made by Moser was that this result can be extended
to nonnegative subsolutions. A nonnegative subsolution v to (A.4.1) satisfies (aijvi)j ≥ 0 in
the weak sense. That is to say, for any 0 ≤ ψ ∈ H1

0 (Ω), we have∫
Ω

aijviψj ≤ 0. (A.4.4)

Lemma A.4.1. The estimate (A.4.3) also holds for any nonnegative subsolutions of (A.4.1),
and in particular for

v = f(u),

where u is a solution to (A.4.1) and f is a nonnegative convex function so that integrals in
(A.4.3) are both finite. If v is a subsolution so is f(v), provided f is nonnegative, convex and
monotone increasing.

Remark:

1. A convex function f : R → R is locally Lipschitz by the following estimate∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ max
(∣∣∣∣f(x)− f(b)

x− b

∣∣∣∣+ ∣∣∣∣f(a)− f(y)

a− y

∣∣∣∣) ,
for −∞ < a < x < y < b < +∞. Moreover, if f is of sublinear growth (i.e. for some
α, β > 0, |f(x)| ≤ α|x|+ β), then f is globally Lipschitz on R;

2. The square integrability of v = f(u) naturally requires that f to be of sublinear growth
(u ∈ H1(Ω) is in general not bounded on Ω), and hence it is natural to assume that f
is globally Lipschitz;

3. It is important to make precise the pointwise definition of f ′(u) because for some E ⊂ R
of zero measure, u−1(E) may possess positive measure in Ω. To do so we first observe
that f is Lipschitz, and hence it has an almost everywhere defined derivative

g(u), u ∈ D

where D is dense in R. By convexity, g(u) must be a non-decreasing function, and
hence we may define for every u ∈ D, g+(u) = g−(u) = g(u), and elsewhere g+(u) =

lim
ϵ→0+

u+ϵ∈D

g(u+ϵ) and g−(u) = lim
ϵ→0+

u−ϵ∈D

g(u−ϵ). Now, we define f ′(u) = (g+(u)+g−(u))/2 for

u ∈ R. It is worthwhile to mention that g+ and g− are monotone functions on R, and
hence both of them have at most countably many discontinuities, which means that D
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can be chosen to satisfy that R\D is a countable subset. Once the pointwise definition of
f ′(u) is given, we can define ∇v = ∇ (f(u)) = f ′(u)∇u, which is therefore well-defined
almost everywhere. The rigorous arguments will be presented in the proof.

证明. Without loss of generality we consider the balls centered at 0 assuming that |x| < ρ+σ

is contained in Ω. By η(x) we denote a function of compact support in |x| < ρ + σ with a
piecewise continuous derivative. Then in (A.4.4) let

ψ(x) = vη2

which is nonnegative and of compact support. Therefore, we have∫
aijη2vivj + 2

∫
aijηvηivj ≤ 0. (A.4.5)

Using Schwarz inequality one finds∫
η2|∇v|2 ≤ 4λ4

∫
v2|∇η|2. (A.4.6)

Choosing for η(x) a function which is piecewise linear in |x| and is equal to 0 for |x| > ρ+ σ

and equal to 1 for |x| < ρ, we obtain |∇η| ≤ σ−1 and∫
|x|<ρ

|∇v|2 ≤ 4λ4

σ2

∫
|x|<ρ+σ

v2, (A.4.7)

which proves the estimate for subsolutions.
We show now that every nonnegative convex function v = f(u) yields such a subsolution.

We first start with functions having a continuous second derivative f ′′(u) which vanishes for
|u| > M ; the convexity implies that f ′′(u) ≥ 0. Let ψ(x) ≥ 0 be of compact support and

ϕ(x) = f ′(u)ψ(x).

Then
aijϕiuj = aijψivj + f ′′ψaijuiuj ≥ aijψivj . (A.4.8)

Integrating over x ∈ Ω gives
0 ≥

∫
aijψivj .

This proves (A.4.4) for any ψ ≥ 0 of compact support which is indefinitely differentiable. In
fact the assumption f ′′ = 0 for |u| > M insures that

ϕi = f ′ψi + f ′′uiψ

is square integrable (this is because f ′ is bounded on R). If here u is only a subsolution and
f ′ ≥ 0, then ϕ = f ′(u)ψ(x) ≥ 0, and the above arguments also work in this case, which shows
that v = f(u) is still a subsolution.

To extend the above results to general nonnegative convex function, we first give the
following claim.
Claim 1: Given any nonnegative convex function f on R, there is a sequence of nonnegative
convex functions {fm} ⊂ C2(R) and f ′′

m(u) = 0 for |u| > M (m) so that fm → f in C0
loc(R) and

f ′
m(u) → f ′(u) for each fix u ∈ R as m→ ∞, where f ′(u) is the one defined in the remark.
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proof of Claim 1. Define the following mollifier

J(x) =

e−1/(1−x2)/I if |x| < 1

0 if |x| ≥ 1
,

where I =
∫ 1

−1
e−1/(1−x2)dx is a normalization constant. We further define Jϵ(x) = J(x/ϵ)/ϵ.

It is not hard to see that {Jϵ} is a family of nonnegative indefinitely differentiable functions
that have global integration 1 and support within [−ϵ, ϵ] respectively.

Given ϵ > 0, we observe that f ′ is a bounded function on [−1/ϵ, 1/ϵ], and so there
is a positive constant A such that A > f ′(x) > −A for x ∈ [−1/ϵ, 1/ϵ]. Now we define
f ϵ(x) = f(x) for x ∈ [−1/ϵ, 1/ϵ] satisfying (f ϵ)

′
(x) = A if x > 1/ϵ and −A if x < −1/ϵ. This

definition insures that all f ϵ are convex functions satisfying (f ϵ)
′′
(x) = 0 for all |x| > 1/ϵ.

Now we check that
fϵ(u) =

∫
R
f ϵ(u− x)Jϵ(x)dx

satisfies the requirements in the claim. At first, it is not hard to see that fϵ’s are all nonnegative
convex and C∞ smooth all over R.

Let M > 0 and then for u ∈ [−M,M ] we have for small ϵ > 0 (say 1/ϵ > max(5M, 2)),

|fϵ(u)− f(u)| =
∣∣∣∣∫

R
(f ϵ(u− z)− f(u))Jϵ(z)dz

∣∣∣∣
≤
∫
|z−u|≤1/ϵ

|f(u− z)− f(u)|Jϵ(z)dz

+

∫
u−z≥1/ϵ

|A(u− z − 1/ϵ) + f(1/ϵ)− f(u)|Jϵ(z)dz

+

∫
u−z≤−1/ϵ

| −A(u− z − 1/ϵ) + f(−1/ϵ)− f(u)|Jϵ(z)dz

≤
∫
|z|≤ϵ

|f(u− z)− f(z)|Jϵ(z)dz

≤ sup
x,y∈[−M−1,M+1]

|f(x)− f(y)|
|x− y|

ϵ.

This proves that fϵ converges to f locally uniformly as ϵ→ 0+.
To see the pointwise convergence of (fϵ)′ to f ′, we first observe that for every u ∈ R,

(f ′)ϵ (u) = (fϵ)
′
(u). (A.4.9)

Consider for h ̸= 0,

fϵ(u+ h)− fϵ(u)

h
=

∫
R

f(u+ h− z)− f(u− z)

h
Jϵ(z)dz

=

∫ ϵ

−ϵ

f(u+ h− z)− f(u− z)

h
Jϵ(z)dz.

For small |h|, we know that∣∣∣∣f(u+ h− z)− f(u− z)

h
Jϵ(z)

∣∣∣∣ ≤ sup
x,y∈[|u|−100,|u|+100]

|f(x)− f(y)|
|x− y|

Jϵ(z),
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the left hand side of which is integrable. On the other hand, because f is Lipschitz, the
integrands converges pointwise to f ′(u − z)Jϵ(z) for almost every z ∈ R. Therefore, by
LDCT, (A.4.9) holds.

Now, if f ′ is continuous at some u ∈ R, we have

|(f ′)ϵ (u)− f ′(u)| ≤
∫
R
|f ′(u− z)− f ′(u)|Jϵ(z)dz

≤
∫ ϵ

−ϵ

|f ′(u− z)− f ′(u)|Jϵ(z)dz

≤ sup
−ϵ<z<ϵ

|f ′(u− z)− f ′(u)|.

Taking lim supϵ→0+ on both sides, we obtain the fact that (f ′)ϵ (u) → f ′(u) as ϵ → 0. If for
some u ∈ R, f ′ is not continuous, then by monotonicity, it has left and right limits at u. In
fact, by using the notations in Remark 3., we know that f ′(x) = g+(x) = g−(x) except for
countably many points in R, and at these exceptional points u, f ′(u) = (g+(u) + g−(u))/2 =

(f ′(u+) + f ′(u−))/2. Furthermore, we have

|(f ′)ϵ (u)− f ′(u)| =
∣∣∣∣(f ′)ϵ (u)−

f ′(u+) + f ′(u−)

2

∣∣∣∣
≤
∫ ϵ

0

|f ′(u− z)− f ′(u−)|Jϵ(z)dz +
∫ 0

−ϵ

|f ′(u− z)− f ′(u−)|Jϵ(z)dz

≤ 1

2
sup

0<z<ϵ
|f ′(u− z)− f ′(u−)|+ 1

2
sup

−ϵ<z<0
|f ′(u− z)− f ′(u+)|.

This completes the proof of Claim 1.

Claim 2: Given any nonnegative convex function f on R, if for general u ∈ H1(Ω) (Ω
bounded), v = f(u) ∈ H1(Ω), then f should be globally Lipschitz with coefficient L > 0 and
∥f(u)∥H1(Ω) ≤ L ∥u∥H1(Ω). Furthermore, we have

∇v(x) = f ′(u(x))∇u(x),

for almost all x ∈ Ω.

proof of Claim 2. If f is not globally Lipschitz, then it is not of sublinear growth and so by
simply taking u(x) ≡ C → ∞, we have∫

Ω
(f(u))

2∫
Ω
u2

=
f(C)2

C2
→ ∞,

which shows that f : H1 → H1 is not a bounded operator.
Now, we may without losing generality assume that f is Lipschitz. By Claim 1, we have

a sequence of nonnegative convex functions {fm} ⊂ C2(R) and f ′′
m(u) = 0 for |u| > M (m) so

that fm → f in C0
loc(R) and f ′

m(u) → f ′(u) for each fix u ∈ R as m→ ∞. By the proof of the
claim, the Lipschitz coefficients of fm’s are all bounded by L, and so according to Theorem
2.2.2, all fm(u) ∈ H1(Ω) and ∥fm(u)∥H1 ≤ L ∥u∥H1 . By local uniform convergence of fm to f
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and |fm(u)| ≤ L|u|+C, which is square integrable on Ω, we have by LDCT, fm converges to
f in L2(Ω). Moreover, by u-pointwise convergence of f ′

m(u) to f ′(u), we have x-a.e. pointwise
convergence of f ′

m(u(x)) to f ′(u(x)), and hence by Fatou’s lemma∫
Ω

|f ′(u)∇u|2 ≤ lim inf
m→∞

∫
Ω

|∇ (fm(u)) |2 ≤ L

∫
Ω

|∇u|2.

Moreover, |∇ (fm(u(x))) | = |f ′
m(u(x))∇u(x)| ≤ L|∇u(x)| for almost every x ∈ Ω, and hence

also by LDCT, ∇ (fm(u)) converges in L2(Ω) to f ′(u)∇u, which shows that

∇v(x) = f ′(u(x))∇u(x), x-a.e.

and hence v ∈ H1(Ω).

Returning to the proof of the lemma, we have by setting vm = fm(u)∫
|x|<ρ

|∇vm|2 ≤ 4λ4

σ2

∫
|x|<ρ+σ

v2m.

Using Claim 1 and 2, we may send m→ ∞ and obtain the desired estimate.

Now, let us consider a Sobolev type inequality without giving proof.

Lemma A.4.2. Let w ∈ H1(Ω). Then there is a constant cn which depends on n and the
choice of c0 such that(

ρ−n

∫
|x|<ρ

w2κ

)1/κ

≤ cn

(
ρ−n+2

∫
|x|<ρ

|∇w|2 + ρ−n

∫
N

w2dx

)
(A.4.10)

for every 1 ≤ κ ≤ n/(n − 1). Here N is any measurable set in |x| < ρ of measure m(N) ≥
c−1
0 ρn. In the following c−1

0 will be chosen to be half the volume of the unit ball and cn, n ≥ 2,
depends on n only.

Remark:

1. The exponent κ in (A.4.10) does not have to be ≤ n/(n − 1), however the limitation
κ ≤ n/(n− 2) is essential;

2. The existence of the integral in (A.4.10) follows from the finiteness of the integrals on
the right.

Using Lemmas A.4.1 and A.4.2 it is possible to estimate the square integral of wκ in
terms of the square integral of w for any nonnegative subsolution w. For this purpose let N
be the sphere |x| < ρ in Lemma A.4.2 and apply (A.4.3) to w:(

ρ−n

∫
|x|<ρ

w2κ

)1/κ

≤ cn

(
ρ−n+2

∫
|x|<ρ

|∇w|2 + ρ−n

∫
|x|<ρ

w2dx

)
≤ c

(
1 +

ρ2

σ2

)
ρ−n

∫
|x|<ρ+σ

w2

≤ c

(
1 +

ρ2

σ2

)(
1 +

σ

ρ

)n [
(ρ+ σ)−n

∫
|x|<ρ+σ

w2

]
.
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Assuming σ ≤ ρ we have with a new c(
ρ−n

∫
|x|<ρ

w2κ

)1/κ

≤ c

(
1 +

ρ2

σ2

)[
(ρ+ σ)−n

∫
|x|<ρ+σ

w2

]
(A.4.11)

which is valid for any nonnegative subsolution w.
Finally, we have the following simple observation called Moser Iteration: If ϕ0 > 0 and

0 < ϕν ≤ cνϕκ
ν−1, ν = 1, 2, . . . ; κ > 1, (A.4.12)

then
lim sup
ν→∞

ϕκ−ν

≤ c1ϕ0, (A.4.13)

where c1 = cκ/(κ− 1)2. Defining the sequence ψν by

ψν = cν+1−κ−1ν
1 ϕν ,

(A.4.12) goes over into the inequality

0 < ψν ≤ ψκ
ν−1

which implies
ψν ≤ ψκν

0 .

This makes (A.4.13) evident.

A.4.2 The Core Theorems

Theorem A.4.2. Let v(x) ≥ 0 be a subsolution in the weak sense which is defined in |x| < 2r.
Then

v2(x) ≤ cr−n

∫
|x|<2r

v2dx (A.4.14)

for almost all x in |x| < r.

Remark: This result will be applied to functions f(u) of a solution u, where f is a nonnegative
convex function of u. For v = |u| one obtains a bound

|u|(x) ≤ cδ−n/2

(∫
Ω

u2
)1/2

for all x ∈ Ω′ ⊂⊂ Ω satisfying dist(Ω′, ∂Ω) ≥ δ.

证明. Since v(x) is a subsolution, so is

w = |v(x)|p = v(x)p

for p ≥ 1 because f(v) = vp is a nonnegative convex function with f ′(v) ≥ 0 for v ≥ 0. Let
p = κν and

wν = vκ
ν

, ν = 0, 1, 2, . . . ,
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where κ = n/(n− 1).
According to (A.4.11) we can estimate higher and higher norms of v. Let 2r ≥ ρ0 >

ρ1 > · · · be a sequence of positive numbers satisfying ρν−1 ≤ 2ρν , then (A.4.11) applied to
w = wν−1, ρ = ρν , σ = ρν−1 − ρν ≤ ρν , yields

ϕν = ρ−n
ν

∫
|x|<ρν

w2
ν = ρ−n

ν

∫
|x|<ρν

w2κ
ν−1 ≤ c2

∣∣∣∣∣1 +
(

ρν
ρν−1 − ρν

)2
∣∣∣∣∣
κ

ϕκ
ν−1.

Choosing, for instance, ρν = r(1 + 2−ν) which implies ρν−1 ≤ 2ρν and

ρν
ρν−1 − ρν

= 2ν + 1 ≤ 3ν ,

we find
ϕν ≤ c210

κνϕκ
ν−1 ≤ cνϕκ

ν−1.

By previous arguments, we know that

lim sup
ν→∞

ϕ1/κν

ν ≤ c1ϕ0.

Since the left hand side converges to the essential maximum of v2, the theorem is established.

The following theorem represents a Harnack type inequality which refers to nonnegative
solutions u. The assumption that u is not identically 0 is expressed by the requirement that
the set |x| < r, where u > 1, has at least the measure c−1

0 rn with an appropriate constant
c0 > 0:

m(u > 1 ; |x| < r) > c−1
0 rn. (A.4.15)

This assumption does not reduce generality according to the strong maximum principle for
weak solutions (see Gilbarg-Trudinger section 8.7).

Theorem A.4.3. Let u ≥ 0 be a solution of (A.4.1) in |x| < 2r satisfying (A.4.15). Then
there is a constant c > 0 depending on n and λ only such that

u(x) > c−1 in |x| < r/2.

证明. Using a similar approximation procedure by which we derived inequality (A.4.3) for all
v = f(u), when f ≥ 0 is a convex function, we now derive∫

|x|<r

|∇v|2 ≤ crn−2 (A.4.16)

for functions v = f(u) for which also h = −e−f is a convex function. To prove this result we
consider first functions f which are twice continuously differentiable. Then the convexity of
h implies

f ′′ − f ′ = efh′′ ≥ 0. (A.4.17)
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Let ϕ(x) = f ′ψ(x), where ψ ≥ 0 is of compact support in |x| < 2r. For f ′ ̸= 0, one has

aijϕiuj = aijψivj + f ′′ψaijuiuj = aijψivj +
f ′′

(f ′)2
ψaijvivj .

This and (A.4.17) show that

0 ≥
∫
aijψivj + ψaijvivj ,

or with ψ = η2, where η again is a function of compact support in |x| < 2r, we find∫
η2|∇v|2 ≤ 2λ2

(∫
|∇η|2

)1/2(∫
η2|∇v|2

)1/2

,

and with a new constant c ∫
η2|∇v|2 ≤ c

∫
|∇η|2.

Choosing for η a function which is piecewise linear in |x| and equal to 1 in |x| < r, one obtains
(A.4.16).

We apply (A.4.16) to

v = f(u) = max(− log(u+ ϵ), 0), 0 < ϵ < 1.

Then
h = max(−(u+ ϵ),−1)

is obviously convex and v is well-defined because u > 0. Since by (A.4.15) v = 0 on a set of
measure > c−1

0 rn, Lemma A.4.2 with κ = 1 and (A.4.16) yields

r−n

∫
|x|<r

v2 ≤ cr2−n

∫
|x|<r

|∇v|2 < c3.

On the other hand f is convex and nonnegative. Therefore Theorem A.4.2 gives, for |x| < r/2,

v2(x) ≤ c4r
−n

∫
|x|<r

v2 ≤ c2,

whence, by definition of v, − log(u+ ϵ) ≤ c, or

u+ ϵ ≥ e−c in |x| < r/2

for all 0 < ϵ < 1. Sending ϵ→ 0 one obtains the theorem.

A.4.3 Proof of Theorem A.4.1

By Theorem A.4.2, a solution u satisfying
∫
Ω
u2 ≤ 1 is bounded in every compact sub-

domains Ω′ by
|u(x)| ≤ cδ−n/2

provided dist(Ω′, ∂Ω) ≥ δ > 0.
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It is the aim to estimate the oscillation of u(x) in |x| < ρ in dependence on ρ: Let

ω(ρ) = max
|x|<ρ

u(x)− min
|x|<ρ

u(x),

assuming that the ball |x| < ρ lies in Ω′. Obviously

ω(ρ) < 2cδ−n/2.

Fixing ρ = 2r ≤ δ and adding an appropriate constant to u (which does not alter the
oscillation) we can assume taht

max
|x|<ρ

u(x) = − min
|x|<ρ

u(x) = 1

2
ω(2r) =M.

Then
M + u

M
= 1 +

u

M
,

M − u

M
= 1− u

M
are also solutions of (A.4.1). They are both nonnegative and at least one of them satisfies
condition (A.4.15) (the constant c−1

0 being half the volume of the ball |x| < 1) depending on
whether u ≥ 0 or u ≤ 0 occurs more frequently. Taking the first case we obtain by Theorem
A.4.3

u+M

M
> c−1 in |x| < r

2
=
ρ

4
,

or
−M(1− c−1) ≤ u(x) ≤M in |x| < ρ

4
.

In any case we arrive at

ω
(ρ
4

)
≤M(2− c−1) = ω(ρ)(1− (2c)−1)†

for ρ ≤ δ. Applying this inequality repeatedly we find for r = 4−mρ

ω(r) ≤ ω(4mr)(1− (2r)−1)m = ω(ρ)

(
r

ρ

)α

,

where α = − log4(1− (2c)−1) = c−1
5 . For every r ≤ δ one can find an integer m ≥ 0 such that

ρ = 4mr lies in
δ

4
< ρ ≤ δ,

which gives

ω(r) ≤ ω(ρ)

(
4

δ

)α

rα ≤ cδ−n/2−αrα

if |x| < δ lies in Ω′. Now let Ω′′ ⊂⊂ Ω such that dist(Ω′′, ∂Ω) ≥ 2δ. Then the ball of radius δ
about x lies in Ω′ and we have for any two points x,y ∈ Ω′′,

|u(x)− u(y)| ≤ ω(|x − y|) ≤ cδ−n/2−α|x − y|α

if |x − y| ≤ δ. On the other hand if |x − y| > δ, one has trivially

|u(x)− u(y)| ≤ 2cδ−n/2 ≤ 2cδ−n/2 |x − y|α
δα

.

This proves the theorem with α = c−1
5 and β = c6δ

−n/2−α.
†This inequality can be used to establish a Liouville type theorem: with ω = limρ→∞ ω(ρ) < ∞, one obtains

0 ≤ ω ≤ (1 − (2c)−1)ω, and hence ω = 0.
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