
硕士学位论文

反应扩散方程中高扩散率薄层的效应

TOPICS ON REACTION-DIFFUSION
EQUATIONS WITH LARGE DIFFUSION

RATE WITHIN THIN COMPONENTS

研 究 生：黄忠淦

指导教师：苏琳琳助理教授

二〇二一年五月



国内图书分类号：O29

国际图书分类号：QA299.6

学校代码：14325

密级：公开

理学硕士学位论文

反应扩散方程中高扩散率薄层的效应

硕士研究生：黄忠淦

指 导 教 师：苏琳琳助理教授

申 请 学 位：理学硕士

学 科 专 业：数学

答 辩 日 期：2021年 5月

培 养 单 位：数学系

学位授予单位：南方科技大学



Classified Index: O29
U.D.C: QA299.6

Thesis for the degree of Master of Science

TOPICS ON
REACTION-DIFFUSION

EQUATIONS WITH LARGE
DIFFUSION RATE WITHIN THIN

COMPONENTS

Candidate: Huang Zhonggan

Supervisor: Assistant Professor Linlin Su

Academic Degree Applied for: Master of Science

Speciality: Mathematics

Date of Defence: May, 2021

Affiliation: Department of Mathematics

Degree-Conferring-Institution: Southern University of Science and Technology



摘 要

摘 要
这篇论文着重讨论了道路实效边界条件的均匀化问题。道路实效边界条件由

李慧聪和王学锋教授提出。本文将进一步讨论路网上的实效边界条件。通过解一
个实效辅助问题，我们给出均匀化后的实效传播系数的具体公式。这个具体公式
能帮助我们解决传播效率的优化问题，给出了关于路网形状的法则使得整体的传
播效率最大。满足这样法则的形状被称为平衡图。然后，我们讨论了道路实效传播
系数极大时，实效传播系数的增长率。最后，本文还给出了李和王文章中未解决的
收敛速率问题一个部分解答。

关键词：道路实效边界条件；实效传播系数；均匀化；平衡图；收敛速率
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ABSTRACT

ABSTRACT
This thesis discusses the homogenization problems of Road effective boundary con-

ditions (EBCs). The concept of Road EBCs was proposed recently by H. Li and X. Wang,
and in this thesis, we extend the effective conditions on closed curves to those on patterns,
especially on the included nodes. We derive an explicit formula for the effective diffusion
tensor by using the solutions to some effective cell problems after homogenizing Road
EBCs. We also prove that homogenization process commutes with the derivation of Road
EBCs. By analyzing the effective diffusion tensor, we obtain several rules for maximiz-
ing its trace with given Road-effective-diffusivity/scale and length/scale in each cell and
define a notion of balanced patterns. Moreover, we give an estimate of the trace of the
effective diffusion tensor of patterns satisfying some connectedness as Road-effective-
diffusivity/scale goes to infinity. Finally, we present a convergence rate result of Road ef-
fective boundary conditions (EBCs) in reaction-diffusion equation with Fisher-KPP type
nonlinearity, which was an unsolved question in Li and Wang’s article.

Keywords: effective diffusion tensor; Road effective boundary condition; homogeniza-
tion; balanced pattern; convergence rate
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION
A reaction-diffusion equation is a partial differential equation (PDE) that models

mass/species diffusion/dispersion, creation/reproduction and degradation/death within
some space-time region. Let 𝑇 > 0 be the final time and 𝑢(x, 𝑡), x ∈ ℝ𝑛, 𝑡 ∈ [0, 𝑇 ]
the density of mass/species. Then the model (without a boundary condition) usually takes
the form

⎧⎪
⎨
⎪⎩

∂𝑢
∂𝑡 = 𝛁x ⋅ (𝐴(x, 𝑡)𝛁x𝑢) + 𝑓(x, 𝑡, 𝑢), x ∈ ℝ𝑛, 𝑡 ∈ [0, 𝑇 ]

𝑢(x, 0) = 𝜓(x),
(1.0.1)

where 𝐴 is called diffusion tensor and satisfies some proper conditions, 𝜓 is the initial
density, and 𝑓 is called reaction source term and describes how fast the reaction takes
place in the time-space and how it depends on density 𝑢.

The main purpose of this dissertation is to investigate the effects of 𝐴, especially
when 𝐴 takes large/small values within some thin spatial regions. This topic was first
proposed by Li and Wang [22] in 2017, in which they assumed that on a thin road ℝ×(0, 𝛿)
with 𝛿 > 0, 𝐴 ≡ 𝜎(𝛿) and 𝐴 ≡ 1 elsewhere. For different scaling relationships between
𝜎 and 𝛿 as 𝛿 → 0, they derived various effective boundary conditions (EBCs) on the
road without width (i.e., ℝ × {0}). In each of the cases, the EBCs indicate the effects
of the singular values within some thin regions in a neat way. To test the effects of these
EBCs, they assumed that 𝑓 = 𝑢(1 − 𝑢), which relates this idea to another famous theory
about Fisher-KPP equations, which was first proposed by Fisher [14], and Kolmogorov,
Petrovsky and Piskunov [20]. In the classical 1-D setting, the solutions with compactly
supported initial values to the equation (1.0.1) with diffusion rate 1, and reaction rate
𝑢(1 − 𝑢) will be asymptotically equivalent to a function of the form 𝑈(𝑥 − 𝑐∗𝑡), with 𝑈
satisfying the ODE 𝑈 ″ +𝑐∗𝑈 ′ +𝑈(1−𝑈) = 0. Here 𝑐∗ is called the propagation speed of
the species, and it was computed that in this particular case 𝑐∗ = 2√𝑓 ′(0) = 2. In higher
dimensional spaces, one can also define propagation speed of solutions, and if the diffusion
tensor is identity and 𝑓 = 𝑢(1 − 𝑢), the propagation speed will still be 2. Returning to Li
and Wang’s article, we will see an interesting result that, when 𝜎𝛿 → 𝑎 > 0 as 𝛿 → 0,
the propagation speed in 𝑥-direction will be much larger than 2, which clearly exhibits the
effects of the EBC. For more materials on the study of propagation speeds, we refer to
[5-7, 9, 12-13, 16-18, 20, 34, 40].
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CHAPTER 1 INTRODUCTION

In the main part of this dissertation, we will take a further look at the effects and
properties of 𝐴 with large jumping discontinuity. To begin with, we extend the road ef-
fective boundary conditions to those on patterns, and discuss the homogenization problem
of these effective conditions. The following results have been published in Journal of Dif-
ferential Equations.

The major issue is the commutation between the classical periodic homogenization
and the “Road” effective boundary condition (EBC) proposed by Li and Wang [22-23].
For 𝜖, 𝛿 > 0, we consider the following family of problems,

⎧⎪
⎨
⎪⎩

−𝛁 ⋅ (�̄�(𝜖−1x)𝛁𝑢𝛿,𝜖(x)) = 𝑓(x), x ∈ 𝛺 ⊂⊂ ℝ2,

𝑢𝛿,𝜖(x) = 0, x ∈ ∂𝛺,
(1.0.2)

where �̄�(x) is 1-periodic, and (in2 = (0, 1)2) equals 𝜎 = 𝑂(1/𝛿) when x lies in a 𝛿-net
𝑅+

𝛿 defined by using a collection 𝒢, called “pattern”, of 𝐶2 curves in the flat torus 𝕋 2, and
1 elsewhere. Without losing generality, we assume that the curves in 𝒢 do not intersect
one another at interior points and any two curves cannot compose a new smooth curve.

We invoke a result in [15] (Lemma 14.16) that given 𝛾 ∈ 𝒢, when 𝛿 > 0 is small,
there will be a 𝐶1 curvilinear coordinate system (𝑠, 𝜏), where 𝑠 ∈ [0, 𝑙] along the tangents,
and 𝜏 ∈ (−𝛿, 𝛿) along some smooth unit normal field are both unit speed. Define 𝑅𝛾

𝛿 to
be the image of (0, 𝑙) × (−𝛿, 𝛿), and 𝑅𝛾

𝛿,+ = 𝑅𝛾
𝛿 ∩ {𝜏 > 0}. We further define

𝛤1 = ⋃
𝛾∈𝒢

⋂
𝛿>0

𝑅𝛾
𝛿 , 𝑅𝛿 = ⋃

𝛾∈𝒢
𝑅𝛾

𝛿 and 𝑅+
𝛿 = ⋃

𝛾∈𝒢
𝑅𝛾

𝛿,+.

After choosing a proper periodic extension of 𝒢 to ℝ2, we may consider the above curves
and sets as distributed periodically in ℝ2. Notice that given a periodic extension of 𝒢, its
planar translation is still an appropriate extension. In the major part of this article, we will
ignore this small difference caused by translation because it will not change the ultimate
effective model, but in Section 4, we will point out its importance in further analysis. A
typical example is illustrated in Figure 1.1.

Physically, these 𝛿-roads 𝑅+
𝛿 represent thin wires that possess a higher diffusion rate

than in the materials elsewhere, and the solution 𝑢𝛿,𝜖 to the full model (1.0.2) could de-
scribe the effects of the roads in a sufficient way. However, there are many obstacles
in directly considering the full equation either analytically or computationally. In PDE
theory, the solutions don’t have much regularity because of the discontinuity of diffusion
rates, and in computational PDE theory, obtaining the solution requires huge computa-
tional resources due to the small scales involved in the equation.

2



CHAPTER 1 INTRODUCTION

(a) Viewed in one cell. (b) Viewed in a nine-palace.

Figure 1.1 This is a qualitative illustration of a typical pattern extended periodically in ℝ2; the
blue curves enclose 𝑅𝛾𝑖

𝛿 for 1 ⩽ 𝑖 ⩽ 5 (“𝛾6” and 𝛾1 are regarded as the one single
curve); even though 𝛾3 and 𝛾4 form a straight line, the intersection of which and 𝛾2
forces us to consider the two arcs separately; each 𝛾𝑖 splits 𝑅𝛾𝑖

𝛿 into two (curved)
quadrangles, and 𝑅𝛾

𝛿,+ can be chosen to be any of the two.

To resolve these issues, we exploit the periodic homogenization and EBC theories,
and discuss the effective model after sending 𝛿, 𝜖 → 0. One may immediately observe
two ways that possibly lead to two models. The first model is the relatively traditional
one: sending 𝜖 → 0 and then 𝛿 → 0. By periodic homogenization, the first step gives us a
homogenized model with constant diffusion tensor 𝛴𝛿 dependent on 𝛿, and so this method
mainly focuses on the limit of 𝛴𝛿 as 𝛿 → 0.

The second way is to reverse the above process: sending 𝛿 → 0 first and then 𝜖 → 0.
According to Li and Wang’s theory [22-23], when sending 𝛿 → 0, we know that at the
scale of 𝜖 > 0, the road width should be 𝜖𝛿, and if 𝜎𝛿 → 𝑎 > 0, then there will be a Road
EBC on each copy of 𝜖𝛾 for each 𝛾 ∈ 𝒢,

𝑎𝜖𝑢0,𝜖
𝑠𝑠 = ∂(𝑢0,𝜖)−

∂𝑛 − ∂(𝑢0,𝜖)+

∂𝑛 ,

in which the notations will be discussed in the ensuing theorem (“𝑎𝜖” represents the Road
effective diffusivity, “𝛿𝜖” the road width and “𝜖” the scale). At this stage, sending 𝜖 → 0
means to do homogenization of interior boundary conditions. It is worth mentioning that
in this article, we find the EBCs on a collection of 𝐶2 curves including nodes instead of
disjoint 𝐶2 closed curves as presented in [23]. Certainly, the arising conditions on the
nodes in this case will be carefully discussed in section 2.4. The following theorems are

3



CHAPTER 1 INTRODUCTION

our main results.
Theorem 1.1: The two intermediate effective models are actually the same. More pre-
cisely, on the one hand, by sending 𝜖 → 0 first, we obtain a solution 𝑢𝛿,0 to the classical
homogenized problem with index 𝛿. On the other hand, by sending 𝛿 → 0 first, we obtain
𝑢0,𝜖, which is isotropic but satisfies Road pattern conditions with road diffusivity 𝑎𝜖. If one
sends 𝛿, 𝜖 → 0 (for some subsequence) respectively, then both two sequences converge
weakly to 𝑢0,0 in 𝐻1

0 (𝛺) as 𝜖, 𝛿 → 0. Moreover, 𝑢0,0 satisfies the effective equation

⎧⎪
⎨
⎪⎩

−𝛁 ⋅ (𝛴0𝛁𝑢0,0)(x) = 𝑓(x), x ∈ 𝛺,

𝑢0,0(x) = 0, x ∈ ∂𝛺,
(1.0.3)

where for 𝑙, 𝑘 = 1, 2,

(𝛴0)𝑘𝑙 = 𝛿𝑘𝑙 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑥𝑙)𝑠𝑑𝑠, (1.0.4)

and 𝑣 = �̄�𝑘 − 𝑥𝑘 satisfies the following conditions in the weak sense

⎧⎪
⎪
⎨
⎪
⎪⎩

−𝛥𝑣(x) = 0, x ∈ 2\𝛤1,

𝑣(x) + 𝑥𝑘 satisfies Road Pattern Conditions with road diffusivity 𝑎, x ∈ 𝛤1,

𝑣 is 1-periodic in ℝ2, and ∫2 𝑣 = 0,
(1.0.5)

where a proper function 𝑢 satisfies Road Pattern Condition with road diffusivity 𝑎 if
1. For each arc 𝛾 ∈ 𝒢, if 𝑠 represents a unit-speed reparametrization and 𝑛 a unit

normal field on 𝛾 , then the domain is locally split into two by the arc, and we may
call the one directed by 𝑛 positive, and another negative. On this arc, 𝑢 satisfies
𝑢+ = 𝑢− and 𝑎𝑢𝑠𝑠 = ∂𝑢−

∂𝑛 − ∂𝑢+

∂𝑛 (if 𝑢 = 𝑣 + 𝑥𝑘, we have 𝑎𝑣𝑠𝑠 + 𝑎(𝑥𝑘)𝑠𝑠 = ∂𝑣−

∂𝑛 − ∂𝑣+

∂𝑛 ,
while if 𝑢 = 𝑢0,𝜖, the Road effective diffusivity 𝑎 should be replaced by 𝑎𝜖);

2. 𝑢|𝛾 (𝑉 ) = 0 for all 𝛾 that intersects the outer boundary at 𝑉 ∈ ∂𝛺 (this condition
corresponds to the case that 𝑢 = 𝑢0,𝜖 and should be removed for the case 𝑢 = 𝑣+𝑥𝑘);

3. If 𝑉 is contained in 𝛺, and 𝛾, 𝛾′ ∈ 𝒢 are two arcs that join at 𝑉 , then 𝑢|𝛾 (𝑉 ) =
𝑢|𝛾′(𝑉 ) (if 𝑢 = 𝑣 + 𝑥𝑘, we have 𝑣|𝛾 (𝑉 ) = 𝑣|𝛾′(𝑉 ));

4. For 𝑉 ∈ 𝛺, if 𝒢𝑉 is the collection of arcs that join at it, we have

∑
𝛾∈𝒢𝑉

𝑢𝑠𝛾 (𝑉 ) = 0,

where 𝑠𝛾 is the arc-length parametrization of 𝛾 starting from 𝑉 (if 𝑢 = 𝑣 + 𝑥𝑘, then
we have ∑𝛾∈𝒢𝑉

(𝑣 + 𝑥𝑘)𝑠𝛾 (𝑉 ) = 0).

4



CHAPTER 1 INTRODUCTION

To evaluate the efficiency of a pattern 𝒢, we consider the trace of the effective diffu-
sion tensor 𝛴0, and obtain the following result.
Theorem 1.2: Among all regular (see Definition 2.2) 1-periodic patterns 𝒢 with total
length 𝑙 > 0 of 𝛤1 in 2, we have 𝑡𝑟(𝛴0) ⩽ 2 + 𝑎𝑙, and equality holds if and only if all
arcs of 𝒢 satisfy the following conditions

1. Every arc is straight;
2. There are at least two different arcs joining at each node;
3. (Balance Condition) Let 𝑉 be a node and 𝛾1, ⋯ , 𝛾𝑚 ∈ 𝒢 be distinct linear segments

that join at 𝑉 . Denoting by 𝑉𝑖 another end point of 𝛾𝑖, 𝑖 = 1, ⋯ , 𝑚, we have
𝑚

∑
𝑖=1

𝑉 − 𝑉𝑖
|𝑉 − 𝑉𝑖|

= 0. (1.0.6)

We call a 1-periodic pattern balanced if it satisfies the above conditions, and it is worth
mentioning that this definition is beyond the periodicity restriction. The above rules give
clues to find optimal patterns regarding the total effects of the enhancing thin layers. Since
finding all such patterns will be a distinct subject, in this article, we will only exhibit
several cases that best illustrate these phenomena.

In the early 70s, Babuska proposed the idea of homogenization [2], and in the 70s
and 80s, the theory of homogenization/averaging of PDEs became a distinct mathemati-
cal area. This theory has been extensively applied in the fields of mechanics of composite
and perforated materials, filtration, disperse media and in many other branches of physics,
mechanics and modern technology. The definitions and many classical results can be
found in the monographs [3-4, 30] and etc. The core idea of homogenization is to find the
effective model of a mixture of several kinds of materials with different physical proper-
ties, say electricity and heat conductivity. For a well-mixed material, the heterogeneity
will be not observable in large scales, and the model then become homogeneous. On the
other hand, the idea of using EBCs came from the classical book [11] of Carslaw and
Jaeger. For more information about EBCs, reinforcement problems and optimally aligned
coatings, see [10, 24-26, 33, 35]. And for more materials about homogenization, see
[1, 8, 19, 21, 29, 31-32, 36, 39].

The idea of mine involves both EBCs and homogenization. The most related idea was
first proposed by L. Tartar, who in 1975 considered a model on perforated materials. The
model was taught in a course by J. L. Lions in College de France [27], but we didn’t find
the original paper of Tartar. The idea was that there are many holes periodically put in the

5



CHAPTER 1 INTRODUCTION

domain (these holes exactly correspond to the word “perforated”) that the material sits in,
and the material satisfies Dirichlet or Neumann boundary condition on the boundaries of
these holes. Similar to this, we in this dissertation, try to replace the boundary conditions
by the EBCs derived by Li and Wang. We will particularly consider the case 𝜎𝛿 → 𝑎 >
0, which interpreted in Physics says that highly diffusive materials accumulate near the
interior boundaries.

After investigating the homogenization problems of thin layers, we now propose a
convergence rate result of road effective boundary conditions in the setting of F-KPP
equations. We consider

⎧⎪
⎨
⎪⎩

𝑢𝑡(x, 𝑡) = 𝛁 (�̄�𝛁𝑢) (x, 𝑡) + 𝑢(1 − 𝑢) ≕ 𝛁 (�̄�𝛁𝑢) (x, 𝑡) + 𝑓(𝑢), (x, 𝑡) ∈ ℝ2 × ℝ+,

𝑢(x, 0) = 𝑔(x) ∈ 𝐶∞
0 (ℝ2),

(1.0.7)
where �̄� = �̄�(𝑦) = 𝜎 if 0 < 𝑦 < 𝛿, and = 1 otherwise, and ‖𝑔‖∞ ⩽ 1. When 𝜎𝛿 → 𝑎 > 0
as 𝛿 → 0, according to Li and Wang’s theory, there will arise a road effective boundary
condition 𝑎𝑢𝑥𝑥 = 𝑢−

𝑦 − 𝑢+
𝑦 on 𝑦 = 0. If we let 𝑣 be the solution of the following problem

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑣𝑡(x, 𝑡) = 𝛥𝑣(x, 𝑡) + 𝑣(1 − 𝑣), (x, 𝑡) ∈ ℝ2 × ℝ+, 𝑦 ≠ 0,

𝜎𝛿𝑣𝑥𝑥(𝑥, 0, 𝑡) = 𝑣−
𝑦 (𝑥, 0, 𝑡) − 𝑣+

𝑦 (𝑥, 0, 𝑡), 𝑥 ∈ ℝ, 𝑡 > 0,

𝑣−(𝑥, 0, 𝑡) = 𝑣+(𝑥, 0, 𝑡), 𝑥 ∈ ℝ, 𝑡 > 0

𝑣(x, 0) = 𝑔(x) ∈ 𝐶∞
0 (ℝ2),

(1.0.8)

then we have the following convergence rate result.
Theorem 1.3: Let 𝑢 and 𝑣 be defined above. Then we have for some 𝑀 > 0 and any
small 𝛿 > 0, if 𝑂(1) ⩽ 𝜎 ⩽ 𝑂(𝛿−(1+𝛼)) for some 0 < 𝛼 < 1/2, then

max
𝑡∈[0,𝑇 ]

⎛
⎜
⎜
⎝

∫
ℝ2

|𝑢 − 𝑣|2(x, 𝑡)𝑑x
⎞
⎟
⎟
⎠

1/2

⩽ 𝐶(𝑇 ) 𝜎1/2𝛿1−𝛼/2. (1.0.9)

Furthermore, if the initial value 𝑔 ≡ 0 on the tube ℝ × (−𝜅, 𝜅) for some 𝜅 > 0, then for
𝑂(1) ⩽ 𝜎 ⩽ 𝑜(𝛿−2), we may replace “𝜎1/2𝛿1−𝛼/2” by “𝜎1/2𝛿”.

This thesis is composed mainly of two parts. In chapter 2, we give several simple
inequalities, a density result and a convergence rate result. In chapter 3, we present the
derivation and description of EBCs on patterns and the proof of Theorem 1.1 from two
perspectives. Moreover, we prove Theorem 1.2 and list several balanced patterns, and then
we give an estimate of 𝑡𝑟(𝛴0) as 𝑎 → ∞.
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CHAPTER 2 PROPERTIES OF THE “ROADS”

CHAPTER 2 PROPERTIES OF THE “ROADS”
2.1 Road Effective Boundary Conditions: from a Road to a Pat-

tern

2.1.1 Several Useful Facts

Suppose 𝑢 is a 𝐶1 function on some subdomain of ℝ2, then we have the following facts.
Moreover, by density arguments, these facts can be applied to 𝐻1 functions.
Lemma 2.1: Let 𝜉 be the linear segment (0, 𝑙)×{0} ⊂ ℝ2, with 𝑙 > 0, and z = (𝑧1, 𝑧2) ∈
ℝ2 a vector such that 𝑧2 > 0. Denoting by 𝐴 the parallelogram spanned by z and (𝑙, 0),
then we have

•
|
|
|
||

∫
𝜉+z

𝑢𝑑𝑥 − ∫
𝜉

𝑢𝑑𝑥
|
|
|
||

⩽ |z|
𝑧2 ∫

𝐴

|𝛁𝑢|𝑑𝑥𝑑𝑦;

•
|
|
|
||
∫
𝜉

𝑢𝑑𝑥
|
|
|
||

⩽ 1
𝑧2 ∫

𝐴

|𝑢|𝑑𝑥𝑑𝑦 + |z|
𝑧2 ∫

𝐴

|𝛁𝑢|𝑑𝑥𝑑𝑦.

Proof: For 0 < 𝑥 < 𝑙, we have by Fundamental Theorem of Calculus (FTC)

𝑢(𝑥 + 𝑧1, 𝑧2) − 𝑢(𝑥, 0) =
1

∫
0

(𝛁𝑢 ⋅ z)(𝑥 + 𝑠𝑧1, 𝑠𝑧2)𝑑𝑠.

Thus, we have
𝑙

∫
0

|𝑢(𝑥 + 𝑧1, 𝑧2) − 𝑢(𝑥, 0)| 𝑑𝑥 ⩽ |z|
𝑙

∫
0

1

∫
0

|𝛁𝑢|(𝑥 + 𝑠𝑧1, 𝑠𝑧2)𝑑𝑠𝑑𝑥

= |z|
𝑧2

𝑧2

∫
0

𝑙+𝑦 𝑧1
𝑧2

∫
𝑦 𝑧1

𝑧2

|𝛁𝑢|(𝑥, 𝑦)𝑑𝑥𝑑𝑦

= |z|
𝑧2 ∫

𝐴

|𝛁𝑢|𝑑𝑥𝑑𝑦.

7
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As for the second inequality, we set z to be 𝑠z for some 𝑠 ∈ (0, 1], and thus
|
|
|
||
∫
𝜉

𝑢𝑑𝑥
|
|
|
||

⩽ ∫
𝜉+𝑠z

|𝑢|𝑑𝑥 + |𝑠z|
𝑠𝑧2 ∫

𝐴

|𝛁𝑢|𝑑𝑥𝑑𝑦.

Integrating both sides w.r.t. 𝑠 from 0 to 1, we obtain the result. ∎
Lemma 2.2: Let 𝑢(𝑟, 𝜃) ≔ 𝑢(𝑟 cos 𝜃, 𝑟 sin 𝜃). Then for fixed 𝜃0 ∈ (0, 𝜋] and 𝑙 > 0, we
denote by 𝐵 the sector {0 < 𝑟 < 𝑙, 0 < 𝜃 < 𝜃0}, and we have

|
|
|
||

𝑙

∫
0

𝑢(𝑟, 𝜃0)𝑑𝑟 −
𝑙

∫
0

𝑢(𝑟, 0)𝑑𝑟
|
|
|
||

⩽ ∫
𝐵

|𝛁𝑢|𝑑𝑥𝑑𝑦.

Proof: By FTC, we know that

𝑢(𝑟, 𝜃0) − 𝑢(𝑟, 0) =
𝜃0

∫
0

𝑢𝜃(𝑟, 𝜃)𝑑𝜃,

and then
𝑙

∫
0

|𝑢(𝑟, 𝜃0) − 𝑢(𝑟, 0)|𝑑𝑟 ⩽
𝑙

∫
0

𝜃0

∫
0

|𝑢𝜃| (𝑟, 𝜃)𝑑𝜃𝑑𝑟

=
𝑙

∫
0

𝜃0

∫
0

|𝑢𝜃| (𝑟, 𝜃)
𝑟 𝑟𝑑𝜃𝑑𝑟

⩽ ∫
𝐵

|𝛁𝑢|𝑑𝑥𝑑𝑦.

∎
Lemma 2.3: Let 𝜉 = (0, 𝑙) × {0} be defined in prior lemmas, and 𝑔(𝑥) some continuous
function on 𝜉 (here 𝜉 is considered as part of 𝑥-axis, and the image of 𝑔 is the 𝑦-axis.) We
then have the following estimate

𝑙

∫
0

|𝑢(𝑥, 𝑔(𝑥)) − 𝑢(𝑥, 0)| 𝑑𝑥 ⩽ ∫
𝐷(𝑔)

|𝛁𝑢|(𝑥, 𝑦)𝑑𝑥𝑑𝑦,

where 𝐷(𝑔) is the domain enclosed by 𝑦 = 0, 𝑦 = 𝑔(𝑥), 𝑥 = 0 and 𝑥 = 𝑙.
Lemma 2.4: Let 0 < 𝜆 < 1, 𝑙 > 0, 𝑎 > 0, then we have

|
|
|
||

1
𝜆

𝜆𝑙

∫
0

𝑢(𝑥, 𝑎)𝑑𝑥 −
𝑙

∫
0

𝑢(𝑥, 0)𝑑𝑥
|
|
|
||

⩽ √2 + 𝑙2/𝑎2

𝜆2 ∫
𝐶

|𝛁𝑢|𝑑𝑥𝑑𝑦,

8
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where 𝐶 is the (closed) trapezoid induced by the four vertices: (0, 0), (𝑙, 0), (0, 𝑎), (𝜆𝑙, 𝑎).
Proof: We define

𝐺 ∶ [0, 𝑙] × [0, 𝑎] ⟶ 𝐶,

(𝛼, 𝛽) ⟼ ((1 − 1 − 𝜆
𝑎 𝛽) 𝛼, 𝛽) .

Then, it can be shown that 𝐺 is a nondegenerate diffeomorphism. We also have
• 𝑢(𝐺(𝛼, 0)) = 𝑢(𝛼, 0), and 𝑢(𝐺(𝛼, 𝑎)) = 𝑢(𝜆𝛼, 𝑎);
• Let 𝛁𝐺 be derivatives w.r.t. 𝛼 and 𝛽, we have

|𝛁𝑢|2 = 𝛁𝐺𝑢 ⋅ (𝐻𝛁𝐺𝑢) ,

where

𝐻 = 𝐷𝐺𝐷𝐺𝑇 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(1 − 1−𝜆
𝑎 𝛽)

2
+ (

1−𝜆
𝑎 𝛼)

2
−1−𝜆

𝑎 𝛼

−1−𝜆
𝑎 𝛼 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Observe that

1 ⩾ det(𝐻) = (1 − 1 − 𝜆
𝑎 𝛽)

2
⩾ 𝜆2 > 0,

and

2 + 𝑙2

𝑎2 (1 − 𝜆)2 ⩾ 𝑇 𝑟(𝐻) = 1 + (1 − 1 − 𝜆
𝑎 𝛽)

2
+ (

1 − 𝜆
𝑎 𝛼)

2
⩾ 1 + 𝜆2 > 0.

Thus, we have that the two eigenvalues 𝜆1, 𝜆2 satisfy

𝜆2

2 + 𝑙2

𝑎2 (1 − 𝜆)2
⩽ 𝜆1, 𝜆2 ⩽

2 + 𝑙2

𝑎2 (1 − 𝜆)2

𝜆2 .

Now, by Lemma 2.1, we have
|
|
|
||

𝑙

∫
0

𝑢(𝐺(𝛼, 𝑎))𝑑𝛼 −
𝑙

∫
0

𝑢(𝐺(𝛼, 0))𝑑𝛼
|
|
|
||

⩽
𝑙

∫
0

𝑎

∫
0

|𝛁𝐺𝑢|𝑑𝛽𝑑𝛼

=
𝑙

∫
0

𝑎

∫
0

|𝛁𝐺𝑢|
√det(𝐻)

√det(𝐻)𝑑𝛽𝑑𝛼

⩽ ∫
𝐶

√2 + 𝑙2/𝑎2

𝜆2 |𝛁𝑢|𝑑𝑥𝑑𝑦.

∎

9
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2.1.2 A Density Result

Within some domain 𝛺 ⊂ ℝ2, we consider a finite collection 𝒢, called a pattern, of
𝐶2 curves (also regular at end points), each two of which intersect at most at their end
points. The union of such curves (including end points) will be denoted by 𝛤 ⊂ �̄�. On
each element 𝛾 ∈ 𝒢, we may consider a Sobolev space 𝐻1(𝛾) defined by naturally taking
a unit speed reparametrization. Meanwhile, any 𝑢 ∈ 𝐻1(𝛺) by Trace Theorem has an
𝐿2(𝛾) trace on each 𝛾 ∈ 𝒢.
Definition 2.1: We define

𝐻1,0
𝛤 (𝛺) ≔ {𝑢 ∈ 𝐻1

0 (𝛺); 𝑢|𝛾 ∈ 𝐻1(𝛾) for all 𝛾 ∈ 𝒢} . (2.1.1)

This function space endowed with the inner product

(𝑢, 𝑣)𝐻1,0
𝛤 (𝛺) = ∫

𝛺

𝛁𝑢 ⋅ 𝛁𝑣 + ∑
𝛾∈𝒢 ∫

𝛾

𝑢𝑠𝑣𝑠

≕ ∫
𝛺

𝛁𝑢 ⋅ 𝛁𝑣 + ∫
𝛤

𝑢𝑠𝑣𝑠

becomes a Hilbert space, where for each 𝛾 , 𝑠(= 𝑠𝛾 ) is a unit speed reparametrization.
It is clear that 𝐶∞

0 (𝛺) ⊂ 𝐻1,0
𝛤 (𝛺), but the question is whether it is dense in this

new space. Before that, we need to make several assumptions on the pattern. Notice
that there are in general four cases in viewing the topological components in 𝛤 : regular
closed curves, arcs without intersecting others, closed curves with a conic point and graphs
composed of arcs and intersection points. We will call the conic/intersection/end points
arising in all these cases “nodes”.
Definition 2.2: A pattern is called regular if

• near each node of the pattern, the arcs that approach this node are mutually nontan-
gential;

• any arc that intersects the outer boundary ∂𝛺 will approach it nontangentially.
Theorem 2.1: (Density Result) If the pattern 𝒢 is regular, then the subspace 𝐶∞

0 (𝛺) is
indeed dense in 𝐻1,0

𝛤 (𝛺).
To show this theorem, several basic facts have to be clarified.

Lemma 2.5: Suppose that a pattern 𝒢 is regular, and in 𝛤 there is only one element 𝛾
that does not intersect the outer boundary ∂𝛺. If either of

1. 𝛾 is a 𝐶2 closed curve;
2. 𝛾 has two different end points,

10
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is satisfied, then, without any regularity assumption on ∂𝛺, we have the above density
result.
Proof: The idea is to split 𝑢 ∈ 𝐻1,0

𝛤 (𝛺) into a sum 𝜇 + 𝜈, where 𝜇 ≡ 0 on 𝛾 . In case 1,
we extend 𝑢|𝛾 to a tubular neighborhood 𝑁𝛿 = {x ∈ 𝛺; 𝑑𝑖𝑠𝑡(x, 𝛾) < 𝛿} for some 𝛿 > 0
by taking constant values along the normals. The auxiliary function 𝜈 is then defined to
be the multiplication of the extension and a cut-off function 𝜂 ∈ 𝐶1

0 (𝛺) satisfying 𝜂 ≡ 1
on 𝑁𝛿/2 and 𝜂 ≡ 0 on 𝑁3𝛿/4. Because 𝑢|𝛾 ∈ 𝐻1(𝛾), we know that 𝜈 ∈ 𝐻1

0 (𝛺). Let
𝜈𝑛 ∈ 𝐶1(𝛾) be a sequence that converges to 𝑢|𝛾 in 𝐻1(𝛾) as 𝑛 → ∞, then the extensions of
𝜈𝑛 similar to 𝑢|𝛾 will then converge to 𝜈 in 𝐻1,0

𝛤 (𝛺) as 𝑛 → ∞. Since 𝛾 is 𝐶2, and 𝜇|𝛾 ≡ 0,
we know that, according to classical trace theorem, 𝜇 can be approximated in 𝐻1

0 (𝛺) by
a sequence of 𝐶∞

0 (𝛺) functions with restriction 0 near 𝛾 .
Case 2 is similar to the first one. We first extend 𝛾 a little bit along the tangent lines at

the two end points, so that the extension ̃𝛾 is still a 𝐶1 curve of case 2. Since 𝑢|𝛾 ∈ 𝐻1(𝛾),
we know by Sobolev Imbedding Theorem, it is also in 𝐶1/2(𝛾). From 𝛾 to ̃𝛾 , we extend 𝑢|𝛾
by connecting boundary values and 0 linearly, so that the extension ̃𝑢 ∈ 𝐻1

0 ( ̃𝛾). Similarly
to Case 1, we may further extend ̃𝑢 to be some 𝜈 ∈ 𝐻1

0 (𝛺). The remaining problem is that
whether there is a sequence of 𝐶∞

0 (𝛺) functions with restriction 0 near 𝛾 approximating
𝜇 = 𝑢 − 𝜈 in 𝐻1

0 (𝛺).
To tackle this problem, we assume that one of the end point is at the origin, and for

𝑘 > 0, we consider

𝜇𝑘(𝜃, 𝑟) = 𝜇(𝜃, 𝑟) · 𝜓(𝑘𝑟),

where (𝜃, 𝑟) ∈ [−𝜋, 𝜋]×[0, ∞) is the polar coordinate system, and 𝜓 ∈ 𝐶∞
0 (ℝ+) satisfying

𝜓(𝑟) ≡ 0, 𝑟 ⩽ 1, 𝜓(𝑟) ≡ 1, 𝑟 ⩾ 2 and 0 ⩽ 𝜓 ⩽ 1. Clearly 𝜇𝑘 converges to 𝜇 in
𝐿2(𝛺) as 𝑘 → ∞, and if one can prove that 𝛁𝜇𝑘 also converges to 𝛁𝜇 in 𝐿2(𝛺), then the
approximation problem is reduced to a piecewise 𝐶1 (referring to the interior boundary)
domain 𝛺\ (𝐵(𝑝, 1/𝑘) ∪ 𝐵(𝑞, 1/𝑘) ∪ 𝛾), which is a known result [28].

Observe that

|𝛁𝜇𝑘|
2 = |(𝜇𝑘)𝑟|2 + 1

𝑟2 |(𝜇𝑘)𝜃|2.

Clearly, (𝜇𝑘)𝜃 = (𝜇𝜓(𝑘𝑟))𝜃 = (𝜇)𝜃𝜓(𝑘𝑟), and so we only have to worry about (𝜇𝑘)𝑟.
Notice that

(𝜇𝜓)𝑟 = 𝜇𝑟𝜓 + 𝑘𝜇𝜓′(𝑘𝑟),

11
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and thus it suffices to evaluate

∫
𝛺

𝑘2(𝜇𝜓′(𝑘𝑟))2𝑟𝑑𝑟𝑑𝜃 ⩽ 𝐶𝑘2
𝜋

∫
−𝜋

2/𝑘

∫
1/𝑘

𝜇2𝑟𝑑𝑟𝑑𝜃. (2.1.2)

Observing that, when 𝑘 is large, any component of 𝛾 contained in the ring {1/𝑘 < 𝑟 < 2/𝑘}
is nontangential to the 𝜃 direction of the ring, we may write this component as some
function graph {𝜃 = 𝑔(𝑟); 1/𝑘 < 𝑟 < 2/𝑘}. By the proof of Lemma 2.2, we know that the
error (2.1.2) satisfies

𝑅𝐻𝑆 = 𝐶𝑘2
𝜋

∫
−𝜋

2/𝑘

∫
1/𝑘

(𝜇(𝑟, 𝜃) − 𝜇(𝑟, 𝑔(𝑟)))2𝑟𝑑𝑟𝑑𝜃

⩽ 𝐶′𝑘2
2/𝑘

∫
1/𝑘

⎛
⎜
⎜
⎝

𝜋

∫
−𝜋

|𝜇𝜃|𝑑𝜃
⎞
⎟
⎟
⎠

2

𝑟𝑑𝑟

⩽ 𝐶″𝑘2
2/𝑘

∫
1/𝑘

𝑟2
𝜋

∫
−𝜋

|𝜇𝜃|2

𝑟2 𝑟𝑑𝜃𝑑𝑟

⩽ 𝐶‴
∫

𝐵(0,2/𝑘)

|𝛁𝜇|2𝑑x

𝑘→∞⟶ 0.
∎

Lemma 2.6: Suppose that a pattern 𝒢 is regular, and in 𝛤 is composed of exactly one arc
𝛾 that has one end contained in 𝛺 and another on ∂𝛺 at the origin. Then if 𝑢 ∈ 𝐻1,0

𝛤 (𝛺)
satisfies 𝑢|𝛾 (0) = 0, we show that 𝑢 can be approximated by 𝐶∞

0 (𝛺) functions in 𝐻1,0
𝛤 (𝛺).

Proof: The crucial point is to delete a proper function so that 𝑢 vanishes on 𝛾 . To do
this, we start with a small disc 𝐵(0, 𝑑) with 𝑑 > 0 and consider a smooth cut-off of 𝑢
in this disc. Since 𝒢 is regular, 𝛾 approaches ∂𝛺 nontangentially, and so we may find
𝜃1, 𝜃2 ∈ (−𝜋, 𝜋) and 𝜖 > 0 such that the cone {𝜃1 + 𝜖 < 𝜃 < 𝜃2 − 𝜖} contains 𝛾 , and
the cone {𝜃1 < 𝜃 < 𝜃2} ∩ 𝐵(0, 𝑑) ⊂ 𝛺. Then we define 0 ⩽ 𝜙(𝜃) ⩽ 1 to be the cut-off
function on (−𝜋, 𝜋) such that 𝜙 ≡ 0 outside (𝜃1, 𝜃2), and 𝜙 ≡ 1 in (𝜃1 + 𝜖, 𝜃2 − 𝜖).

When 𝑑 > 0 is small enough, the segment of 𝛾 in the disc can be written as some
function graph {𝜃 = 𝑔(𝑟); 0 ⩽ 𝑟 < 𝑑}. Since 𝛾 is 𝐶2, we know that 𝜇(𝑟) ≔ 𝑢(𝑟, 𝑔(𝑟)) is
in 𝐻1(0, 𝑑). We claim that 𝜙(𝜃)𝜇(𝑟) is in 𝐻1

0 ({𝜃1 < 𝜃 < 𝜃2}). To see this, we merely
have to worry about the 𝐿2 integrability of the gradient. Since (𝜇(𝑟)𝜙(𝜃))𝑟 = 𝜇𝑟(𝑟)𝜙(𝜃),

12
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we only have to check the derivative along 𝜃, which is
𝑑

∫
0

𝜃2

∫
𝜃1

|𝜇(𝑟)𝜙′(𝜃)|
2

𝑟2 · 𝑟𝑑𝜃𝑑𝑟 ⩽ 𝐶(𝜃2 − 𝜃1)
𝑑

∫
0

(𝜇(𝑟))2/𝑟𝑑𝑟

⩽ 𝐶′(𝜃2 − 𝜃1)𝑑

< ∞,

where we have used the embedding 𝐻1(0, 𝑑) ↪ 𝐶1/2([0, 𝑑]), which implies that
|𝜇(𝑟) − 𝜇(0)| ⩽ 𝑟1/2. Moreover, it is not hard to observe that 𝜇𝜙 can be approximated
in 𝐻1,0

𝛾 ({𝜃1 ⩽ 𝜃 ⩽ 𝜃2}) by 𝐶∞
0 ({𝜃1 < 𝜃 < 𝜃2}) functions.

Now, by a partition of unity and compactness of 𝛾 , we may handle the trace piece by
piece, and finally we arrive at the piece that involves another end point. This end point
can be dealt with by using both the above method and the extension method in the proof
of the above lemma.

∎
Lemma 2.7: Suppose that a pattern 𝒢 is regular, and in 𝛤 there is only one component
compactly contained in 𝛺, composed of only one node at the origin and arcs 𝛾1, ⋯ , 𝛾𝑚 ∈ 𝒢
connecting to it. Then if 𝑢 ∈ 𝐻1,0

𝛤 (𝛺) satisfies

𝑢|𝛾𝑖
(0) = 𝑢|𝛾𝑗

(0), ∀1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑚,

we show that 𝑢 can be approximated by 𝐶∞
0 (𝛺) functions in 𝐻1,0

𝛤 (𝛺).
Proof: Deleting a 𝐶∞

0 (𝛺) function that takes value 𝑢|𝛾1
(0) at the origin, we see that we

only need to consider 𝑢 that has value 0 at the origin. By a partition of unity, we may
safely consider 𝑢 with support contained in the disc 𝐵(0, 𝑑) for some small 𝑑 > 0, and we
have the following observations:

1. By the property of the partition of unity, we may without losing generality assume
that 𝑢|𝛾𝑖

= 0 on ∂𝐵(0, 𝑑) for each 𝑖 = 1, ⋯ , 𝑚;
2. Because 𝑑 > 0 is chosen small, we see that each arc 𝛾𝑖 can be written as some

function graph {𝜃 = 𝑔𝑖(𝑟); 0 ⩽ 𝑟 < 𝑑} in polar coordinates.
By the second observation, each 𝑢|𝛾𝑖

can be extended to 𝐵(0, 𝑑) by revolution, and
we denote this extension by 𝜇𝑖. Suppose both {𝜃1 ⩽ 𝜃 ⩽ 𝜃2} and {𝜃1 + 𝜖 ⩽ 𝜃 ⩽
𝜃2 − 𝜖} for 𝜖 > 0 , 𝜃1, 𝜃2 ∈ (−𝜋, 𝜋) are cones that only contain 𝛾𝑖. Then we define 0 ⩽
𝜙𝑖(𝜃) ⩽ 1 to be the cut-off function defined in the proof of the above lemma, and by the
proof of the above lemma, 𝜇𝑖𝜙𝑖 ∈ 𝐻1

0 ({𝜃1 ⩽ 𝜃 ⩽ 𝜃2}) and 𝜇𝑖𝜙𝑖 can be approximated in

13
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𝐻1,0
𝛾𝑖 ({𝜃1 ⩽ 𝜃 ⩽ 𝜃2}) by 𝐶∞

0 ({𝜃1 < 𝜃 < 𝜃2}) functions.
Therefore, we see 𝑢 − ∑𝑚

𝑖=1 𝜇𝑖𝜙𝑖 is an 𝐻1
0 (𝐵(0, 𝑑)) function with trace 0 on 𝛤 (this is

more exactly “𝛤 ∩ 𝐵(0, 𝑑)”, but since we have reduced our problem to this special case,
we use the same notation), which can certainly be approximated by 𝐶∞

0 (𝐵(0, 𝑑)) functions
that are 0 near 𝛤 .

∎
Lemma 2.8: The conditions on 𝒢 in the above lemma implies that for every 𝑢 ∈ 𝐻1,0

𝛤 (𝛺)

𝑢|𝛾𝑖
(0) = 𝑢|𝛾𝑗

(0), ∀1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑚.

Proof: We set ℎ𝑖 = 𝑢|𝛾𝑖
(0) for each 𝑖 = 1, ⋯ , 𝑚, and consider some 𝜂 ∈ 𝐶∞

0 (𝛺) with
𝜂(x) ≡ 1 for x ∈ 𝐵(0, 𝑑/2). Define 𝜂𝑖 = ℎ𝑖𝜂. For each 𝑖, we have (𝑢 − 𝜂𝑖)|𝛾𝑖

(0) = 0, and
so by the proof of Lemma 2.7, we may find some 𝐻1

0 (𝐵(0, 𝑑)) function 𝜈𝑖 with support
disjoint from other curves so that (𝑢 − 𝜂𝑖 − 𝜈𝑖)|𝛾𝑖

≡ 0. Therefore, we may observe that
𝜈 ≔ 𝑢 − ∑𝑚

𝑖=1 𝜈𝑖 is constant ℎ𝑖 on each 𝛾𝑖 ∩ 𝐵(0, 𝑑/2).
Recall that when 𝑑 is small enough, each segment 𝛾𝑖 ∩ 𝐵(0, 𝑑) can be written as

function graph {𝜃 = 𝑔𝑖(𝑟); 1 ⩽ 𝑟 < 𝑑}, and for convenience, we assume that 𝑔𝑖 ⩽ 𝑔𝑗

for 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑚. Taking 𝑖 = 1 as an example, we consider for 𝑘 > 1 the domain
𝑂𝑘 = {𝑔1(𝑟) < 𝜃 < 𝑔2(𝑟); 𝑑/(𝑘 + 2) < 𝑟 < 𝑑/2}. Notice that by Lemma 2.7, there
will be a sequence 𝑣𝑛 ∈ 𝐶1(𝑂𝑘) ∩ 𝐶0(𝑂𝑘) that converges to 𝜈 in 𝐻1(𝑂𝑘) and satisfies
𝑣𝑛|{𝛾𝑖;𝑑/(𝑘+2)<𝑟<𝑑/2} ≡ ℎ𝑖.

Applying Fundamental Theorem of Calculus to 𝑣𝑛, we have for 𝑑/(𝑘 + 2) < 𝑟 < 𝑑/2,
𝑔2(𝑟)

∫
𝑔1(𝑟)

𝑣𝑛
𝜃(𝑟, 𝜃)𝑑𝜃 = ℎ2 − ℎ1.

If ℎ2 ≠ ℎ1, then we have the inequality

(𝑔2(𝑟) − 𝑔1(𝑟))
𝑔2(𝑟)

∫
𝑔1(𝑟)

(𝑣𝑛
𝜃)2𝑑𝜃 ⩾ |ℎ2 − ℎ1|2,

and because 𝑔2(𝑟) > 𝑔1(𝑟) for 𝑟 > 0,
𝑔2(𝑟)

∫
𝑔1(𝑟)

(𝑣𝑛
𝜃)2𝑑𝜃 ⩾ |ℎ2 − ℎ1|2

(𝑔2(𝑟) − 𝑔1(𝑟)) > |ℎ2 − ℎ1|2

2𝜋 .

14
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Moreover, we have

∫
𝑂𝑘

|𝛁𝑣𝑛|2𝑑x ⩾
𝑑/2

∫
𝑑/(𝑘+2)

𝑔2(𝑟)

∫
𝑔1(𝑟)

|𝑣𝑛
𝜃|2

𝑟2 ⋅ 𝑟𝑑𝜃𝑑𝑟

⩾ |ℎ2 − ℎ1|2

2𝜋

𝑑/2

∫
𝑑/(𝑘+2)

1
𝑟 𝑑𝑟

⩾ 𝑂(| ln (𝑘)|),

and so by the convergence of 𝑣𝑛 to 𝜈 in 𝐻1(𝑂𝑘), we have the estimate

∫
𝑂𝑘

|𝛁𝜈|2𝑑x ⩾ 𝑂(| ln (𝑘)|),

which is impossible because 𝜈 ∈ 𝐻1(𝐵(0, 𝑑)).
∎

Corollary 2.1: If a curve 𝛾 ⊂ 𝛺 approaches ∂𝛺 at the origin nontangentially, then for
𝑢 ∈ 𝐻1,0

𝛾 (𝛺), we have 𝑢|𝛾 (0) = 0.
Proof: The proof is covered by the one of the above lemma. ∎
Proof of Theorem 2.1: By a partition of unity, the problem can be divided into the
cases that have been discussed above in detail. ∎

2.1.3 EBCs on Patterns: Truncation Method

In this subsection, we deal with an EBC problem on some Lipschitz domain 𝛺 as-
sociated with a given pattern 𝒢. The formation of an EBC in some “distributional” sense
does not require the regularity of the whole pattern described in prior subsection. How-
ever, the regularity of the whole pattern ensures that the solution to the effective model is
unique.

Recalling in prior subsection, we have already decomposed 𝒢 into several cases. In
this subsection, we also keep in mind these cases, but because the methods in dealing
with different patterns are so similar (we call it truncation), we only present a proof for a
classical case: 𝒢 composed of one arc 𝛾 = 𝛤 with one end on ∂𝛺 and one in 𝛺.

Let 𝛿 > 0 be small and (𝑠, 𝜏), 𝑠 ∈ (0, 𝑙), 𝜏 ∈ (−𝛿, 𝛿) a normal reparametrization of
a 𝛿-tubular neighborhood of 𝛾 defined in Introduction. As before, we define 𝑅𝛿 to be the
intersection of 𝛺 and the image of (0, 𝑙) × (−𝛿, 𝛿) in ℝ2. We further define the truncated
roads 𝑅𝛿,𝑞 to be the image of (𝑞, 𝑙 − 𝑞) × (−𝛿, 𝛿) for some 𝑞 > 0. By basic geometry,
for every 𝑞 > 0, there is some 𝛿𝑞 > 0 such that for all 0 < 𝛿 < 𝛿𝑞, the truncated road
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𝑅𝛿,𝑞 ⊂⊂ 𝛺.
What we concern about is the following problem

⎧⎪
⎨
⎪⎩

−𝛁 ⋅ (�̄�𝛁𝑢𝛿)(x) = 𝑓(x), x ∈ 𝛺,

𝑢𝛿(x) = 0, x ∈ ∂𝛺,
(2.1.3)

where �̄� = 𝜎 >> 1 in 𝑅𝛿 ∩ {𝜏 > 0} and = 1 elsewhere. Assuming that 𝜎𝛿 → 𝑎 > 0,
what will 𝑢𝛿 converge to? This problem has been well investigated by H. Li and X. Wang
[22-23] for the case that 𝛤 is a circle without conic points that is contained in the domain
𝛺. In fact, their proofs are the main tools to tackle this generalization.

We start with the weak solution 𝑢𝛿 ∈ 𝐻1
0 (𝛺) to (2.1.3), and then for 𝑣 ∈ 𝐻1

0 (𝛺),

∫
𝛺

𝛁𝑣 ⋅ (�̄�𝛁𝑢𝛿) = ∫
𝛺

𝑓𝑣, (2.1.4)

and by replacing 𝑣 = 𝑢𝛿, we obtain the energy estimate for 𝑢𝛿

∫
𝛺

�̄�|𝛁𝑢𝛿|2 ⩽ 𝑂(1), (2.1.5)

which leads to the weak convergence of 𝑢𝛿 to some 𝑢∗ in 𝐻1
0 (𝛺), as 𝛿 → 0.

Lemma 2.9: Suppose that 𝑉1 ∈ ∂𝛺, 𝑉2 ∈ 𝛺 are the two end points of 𝛤 . Then for every
𝛺′ ⊂⊂ 𝛺\{𝑉2} and 𝑑 = min{𝑑𝑖𝑠𝑡(𝛺′, ∂𝛺), 𝑑𝑖𝑠𝑡(𝛺′, 𝑉2)} > 0, there is some 𝛿𝑑 > 0 such
that for all 0 < 𝛿 < 𝛿𝑑 , we have

∫
𝛺′

�̄�|𝛁2𝑢|2 ⩽ 𝑂(1).

Proof: Assume that 𝑙 > 0 is the arc-length of 𝛤 and define 𝑑/6 > 𝛿𝑑 > 0 to be the
number such that for all 0 < 𝛿 < 2𝛿𝑑 , the truncated road 𝑅𝛿, 𝑑

3𝑙
is compactly contained

in 𝛺\{𝑉2}. For convenience, we set 𝑝 = 3
2𝛿𝑑 and 𝑞 = 𝑑

2𝑙 . Observe that 𝑅𝛿 ∩ 𝛺′ ⊂ 𝑅𝛿,𝑞

for 0 < 𝛿 < 𝛿𝑑 , then it suffices to establish the estimate in the region 𝑅𝑝,𝑞, because the
operator coefficients are smooth elsewhere.

Now, by the choice of 𝛿𝑑 , we have that the mapping (𝑠, 𝜏) ↦ 𝛤 (𝑠) + 𝜏𝑛(𝑠) defines
a diffeomorphism from (ℎ + 2𝑞/3, 𝑘 − 2𝑞/3) × (−4𝑝/3, 4𝑝/3) to 𝑅4𝑝/3,2𝑞/3. On 𝑅4𝑝/3,2𝑞/3,
assuming that 0 < 𝛿 < 𝛿𝑑 , one may derive from the PDE of (2.1.3) that

(1 + 𝜏𝜅(𝑠))𝑓 + �̄� (
𝑢𝑠

1 + 𝜏𝜅(𝑠))𝑠
+ �̄� ((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏 = 0, (2.1.6)

where 𝜅 is the curvature of 𝛤 . The above equation holds locally for 𝑠 ∈ (2𝑞/3, 𝑙−2𝑞/3), and
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𝜏 ∈ (−4𝑝/3, 0), (0, 𝛿) and (𝛿, 4𝑝/3) respectively. We also have the transmission condition

⎧⎪
⎨
⎪⎩

𝑢(𝑠, 0−) = 𝑢(𝑠, 0+), 𝑢𝜏(𝑠, 0−) = 𝜎𝑢𝜏(𝑠, 0+),

𝑢(𝑠, 𝛿−) = 𝑢(𝑠, 𝛿+), 𝑢𝜏(𝑠, 𝛿+) = 𝜎𝑢𝜏(𝑠, 𝛿−).
(2.1.7)

We define two cut-off functions 𝜂(𝜏) =
⎧⎪
⎨
⎪⎩

1, |𝜏| ⩽ 𝛿𝑑 ,

0, |𝜏| > 𝑝,
and 𝜉(𝑠) =

⎧⎪
⎨
⎪⎩

0, 𝑠 ∈ (2𝑞/3, 5𝑞/6) ∪ (𝑙 − 5𝑞/6, 𝑙 − 2𝑞/3),

1, 𝑠 ∈ (𝑞, 𝑙 − 𝑞),
both of which are bounded by 0 and 1.

Applying 𝜂2𝜉2𝑢𝑠𝑠 to (2.1.6), we obtain

∫
𝐼

𝜂2𝜉2𝑢𝑠𝑠(1 + 𝜏𝜅(𝑠))𝑓 + �̄� (
𝑢𝑠

1 + 𝜏𝜅(𝑠))𝑠
𝜂2𝜉2𝑢𝑠𝑠 + �̄� ((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏 𝜂2𝜉2𝑢𝑠𝑠𝑑𝜏𝑑𝑠 = 0,

(2.1.8)
where 𝐼 = (2𝑞/3, 𝑙 − 2𝑞/3) × (−4𝑝/3, 4𝑝/3). Notice that

∫
𝐼

�̄� ((1 + 𝜏𝜅(𝑠)𝑢𝜏))𝜏 𝜂2𝜉2𝑢𝑠𝑠𝑑𝜏𝑑𝑠 = − ∫
𝐼

�̄� ((1 + 𝜏𝜅(𝑠)𝑢𝜏))𝜏𝑠 𝜂2𝜉2𝑢𝑠𝑑𝜏𝑑𝑠

− 2 ∫
𝐼

�̄� ((1 + 𝜏𝜅(𝑠)𝑢𝜏))𝜏 𝜂2𝜉𝜉𝑠𝑢𝑠𝑑𝜏𝑑𝑠

≕ −𝑌1 − 2𝑌2.
Then

𝑌1 =
𝑙−2𝑞/3

∫
2𝑞/3

0

∫
−4𝑝/3

((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏𝑠 𝜂2𝜉2𝑢𝑠𝑑𝜏𝑑𝑠 +
𝑙−2𝑞/3

∫
2𝑞/3

𝛿

∫
0

𝜎 ((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏𝑠 𝜂2𝜉2𝑢𝑠𝑑𝜏𝑑𝑠

+
𝑙−2𝑞/3

∫
2𝑞/3

4𝑝/3

∫
𝛿

((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏𝑠 𝜂2𝜉2𝑢𝑠𝑑𝜏𝑑𝑠

(2.1.7)=
𝑙−2𝑞/3

∫
2𝑞/3

0

∫
−4𝑝/3

((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝑠 𝜉2 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠 +
𝑙−2𝑞/3

∫
2𝑞/3

𝛿

∫
0

𝜎 ((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝑠 𝜉2 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠

+
𝑙−2𝑞/3

∫
2𝑞/3

4𝑝/3

∫
𝛿

((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝑠 𝜉2 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠

=
𝑙−2𝑞/3

∫
2𝑞/3

4𝑝/3

∫
−4𝑝/3

�̄� ((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝑠 𝜉2 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠,
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and

𝑌2 =
𝑙−2𝑞/3

∫
2𝑞/3

0

∫
−4𝑝/3

((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏 𝜂2𝜉𝜉𝑠𝑢𝑠𝑑𝜏𝑑𝑠 +
𝑙−2𝑞/3

∫
2𝑞/3

𝛿

∫
0

𝜎 ((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏 𝜂2𝜉𝜉𝑠𝑢𝑠𝑑𝜏𝑑𝑠

+
𝑙−2𝑞/3

∫
2𝑞/3

4𝑝/3

∫
𝛿

((1 + 𝜏𝜅(𝑠))𝑢𝜏)𝜏 𝜂2𝜉𝜉𝑠𝑢𝑠𝑑𝜏𝑑𝑠

(2.1.7)=
𝑙−2𝑞/3

∫
2𝑞/3

0

∫
−4𝑝/3

((1 + 𝜏𝜅(𝑠))𝑢𝜏) 𝜉𝜉𝑠 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠 +
𝑙−2𝑞/3

∫
2𝑞/3

𝛿

∫
0

𝜎 ((1 + 𝜏𝜅(𝑠))𝑢𝜏) 𝜉𝜉𝑠 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠

+
𝑙−2𝑞/3

∫
2𝑞/3

4𝑝/3

∫
𝛿

((1 + 𝜏𝜅(𝑠))𝑢𝜏) 𝜉𝜉𝑠 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠

=
𝑙−2𝑞/3

∫
2𝑞/3

4𝑝/3

∫
−4𝑝/3

�̄� ((1 + 𝜏𝜅(𝑠))𝑢𝜏) 𝜉𝜉𝑠 (𝜂2𝑢𝑠)𝜏 𝑑𝜏𝑑𝑠.

The rest of the proof is covered by that of Lemma 3.2 in [23]. ∎
Lemma 2.10: We have that the limit 𝑢∗ ∈ 𝐻1,0

𝛤 (𝛺), and

∫
𝛺

|𝛁𝑢∗|2 + 𝑎 ∫
𝛤

(𝑢∗
𝑠 )2 ≲𝛺 ∫

𝛺

𝑓 2. (2.1.9)

By “≲∘” we mean the left hand side is less than or equal to a constant multiple relating
possibly to “∘” of the right hand side.
Proof: Recall that we have

∫
𝛺

�̄�|𝛁𝑢𝛿|2 ≲𝛺 ∫
𝛺

𝑓 2. (2.1.10)

Because 𝑢𝛿 weakly converges to 𝑢∗ in 𝐻1
0 (𝛺), we have

lim inf
𝛿→0 ∫

𝛺

|𝛁𝑢𝛿|2 ⩾ ∫
𝛺

|𝛁𝑢∗|2. (2.1.11)

Moreover, we have

(𝜎 − 1) ∫
𝑅𝛿

|𝛁𝑢𝛿|2 ≳ 𝜎
𝑙−𝑞

∫
𝑞

𝛿

∫
0

(𝑢𝛿
𝑠)2 + (𝑢𝛿

𝜏)2𝑑𝜏𝑑𝑠, (2.1.12)
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with 0 < 𝛿 < 𝛿𝑞. According to Lemma 2.9, we have

𝜎
|
|
|
||

𝑙−𝑞

∫
𝑞

𝛿

∫
0

(𝑢𝛿
𝑠)2(𝑠, 𝜏) − (𝑢𝛿

𝑠)2(𝑠, 0+)𝑑𝜏𝑑𝑠
|
|
|
||

⩽ 𝜎
|
|
|
||

𝑙−𝑞

∫
𝑞

𝛿

∫
0

(𝑢𝛿
𝑠(𝑠, 𝜏) − 𝑢𝛿

𝑠(𝑠, 0+))2𝑑𝜏𝑑𝑠
|
|
|
||

+ 𝜎
|
|
|
||

𝑙−𝑞

∫
𝑞

𝛿

∫
0

2𝑢𝛿
𝑠(𝑠, 0+)(𝑢𝛿

𝑠(𝑠, 𝜏) − 𝑢𝛿
𝑠(𝑠, 0+))𝑑𝜏𝑑𝑠

|
|
|
||

= 𝑄1 + 𝑄2,
where

𝑄1 ⩽ 𝜎
|
|
|
|
|

𝑙−𝑞

∫
𝑞

𝛿

∫
0

⎛
⎜
⎜
⎝

𝛿

∫
0

𝑢𝛿
𝑠𝜏𝑑𝜏

⎞
⎟
⎟
⎠

2

𝑑𝜏𝑑𝑠
|
|
|
|
|

⩽ 𝑂(𝛿3/2),
and

𝑄2 ⩽ 2𝜎
⎛
⎜
⎜
⎝

𝑙−𝑞

∫
𝑞

𝛿

∫
0

(𝑢𝛿
𝑠(𝑠, 0+))2𝑑𝜏𝑑𝑠

⎞
⎟
⎟
⎠

1/2
⎛
⎜
⎜
⎝

𝑙−𝑞

∫
𝑞

𝛿

∫
0

(𝑢𝛿
𝑠(𝑠, 𝜏) − 𝑢𝛿

𝑠(𝑠, 0+))2𝑑𝜏𝑑𝑠
⎞
⎟
⎟
⎠

1/2

⩽ 𝐶𝛿1/2
⎛
⎜
⎜
⎜
⎝

𝜎2
𝑙−𝑞

∫
𝑞

𝛿

∫
0

⎛
⎜
⎜
⎝

𝛿

∫
0

𝑢𝛿
𝑠𝜏𝑑𝜏

⎞
⎟
⎟
⎠

2

𝑑𝜏𝑑𝑠
⎞
⎟
⎟
⎟
⎠

1/2

⩽ 𝑂(𝛿).

Here we have used trace theorem. Similar things still occur if we replace 𝑢𝛿
𝑠 by 𝑢𝛿

𝜏 in
(2.1.12), and thus, we have

(𝜎 − 1) ∫
𝑅𝛿

|𝛁𝑢𝛿|2 ≳ 𝜎𝛿
𝑙−𝑞

∫
𝑞

(𝑢𝛿
𝑠)2(𝑠, 0)𝑑𝑠 + 𝛿

𝑙−𝑞

∫
𝑞

(𝑢𝛿
𝜏)2(𝑠, 0−)𝑑𝜏𝑑𝑠 + 𝑜(1).

Because by Lemma 2.9, 𝑢𝛿 converges weakly to 𝑢∗ in 𝐻1
0 (𝛺′) for any 𝛺′ ⊂⊂ 𝛺 without

crossing 𝛤 , according to trace theorem, 𝑢𝛿 converges weakly to 𝑢∗ in 𝐻1(𝛺′ ∩ 𝛤 ), which
leads to the following inequality

lim inf
𝛿→0

𝜎𝛿
𝑙−𝑞

∫
𝑞

(𝑢𝛿
𝑠)2(𝑠, 0)𝑑𝑠 ⩾ 𝑎

𝑙−𝑞

∫
𝑞

(𝑢∗
𝑠 )2(𝑠, 0)𝑑𝑠. (2.1.13)
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Combining (2.1.10), (2.1.11) and (2.1.13), we have

∫
𝛺

|𝛁𝑢∗|2 + 𝑎
𝑙−𝑞

∫
𝑞

(𝑢∗
𝑠 )2𝑑𝑠 ≲𝛺 ∫

𝛺

𝑓 2,

and by using monotone convergence theorem, we are done. ∎
Lemma 2.11: For every 𝜂 ∈ 𝐶∞

0 (𝛺), we have the convergence

∫
𝛺

�̄�𝛁𝑢 ⋅ 𝛁𝜂 𝛿→0⟶ ∫
𝛺

𝛁𝑢∗ ⋅ 𝛁𝜂 + 𝑎 ∫
𝛤

𝑢∗
𝑠𝜂𝑠. (2.1.14)

Proof: It suffices to consider the limit of the following quantity for 𝑛 > 1 and 0 < 𝛿 <
𝛿1/𝑛

𝜎 ∫
𝑅𝛿

𝛁𝑢 ⋅ 𝛁𝜂 = 𝜎 ∫
𝑅𝛿,1/𝑛

𝛁𝑢 ⋅ 𝛁𝜂 + 𝑂
⎛
⎜
⎜
⎜
⎝

𝜎 ∫
𝑅𝛿∩𝐵(𝑉2,3/𝑛)

|𝛁𝑢||𝛁𝜂|
⎞
⎟
⎟
⎟
⎠

= 𝐼1 + 𝐼2.

Notice that 𝐼1 converges to 𝑎 ∫𝑘−1/𝑛
ℎ+1/𝑛 𝑢∗

𝑠𝜂𝑠 as 𝛿 → 0 by Lemma 2.9 and transmission condi-
tions. Be careful that this part requires the 𝐶2 smoothness of the arc.

Moreover, the error term satisfies

𝐼2 ≲ 𝜎
⎛
⎜
⎜
⎜
⎝

∫
𝑅𝛿∩𝐵(𝑉2,3/𝑛)

|𝛁𝑢|2
⎞
⎟
⎟
⎟
⎠

1/2 ⎛
⎜
⎜
⎜
⎝

∫
𝑅𝛿∩𝐵(𝑉2,3/𝑛)

|𝛁𝜂|2
⎞
⎟
⎟
⎟
⎠

1/2

≲ 𝑂
(√

1
𝑛)

.

Using Lemma 2.10, we know, by Lebesgue Dominated Convergence Theorem, that after
sending 𝑛 → ∞, 𝑎 ∫𝑙−1/𝑛

1/𝑛 𝑢∗
𝑠𝜂𝑠 will converge to 𝑎 ∫𝛤 𝑢∗

𝑠𝜂𝑠, and in effect, we obtain the
convergence (2.1.14). ∎
Remark: The setting for a general pattern is quite similar to the above one. Associating
each arc 𝛾 ∈ 𝒢 with a road family 𝑅𝛾

𝛿 as defined before, we consider the union 𝑅𝛿(= 𝑅𝒢
𝛿 ) =

∪𝛾∈𝒢𝑅𝛾
𝛿 , and call this a road net with width 𝛿. The truncated road net will be simply the

union of truncated roads. The truncation method used in the case with one arc having
end points one on ∂𝛺 and one in 𝛺 above can be immediately applied to other cases
with different patterns. Without a regularity requirement on the pattern, the following
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convergence result is always true, provided that each arc is 𝐶2:

𝜎 ∫
𝑅𝒢

𝛿 ∩{𝜏>0}

𝛁𝑢 ⋅ 𝛁𝜂 𝛿→0⟶ 𝑎 ∑
𝛾∈𝒢 ∫

𝛾

𝑢∗
𝑠𝜂𝑠,

where 𝑢∗ is the weak limit of 𝑢 in 𝐻1
0 (𝛺) and 𝜂 ∈ 𝐶∞

0 (𝛺). (The tangential derivative of
𝑢∗ on the arc is well-defined because of Lemma 2.9)

2.1.4 Specifications on the EBCs on Patterns

By the above subsection, we obtain an integral equation for the limit 𝑢∗ ∈ 𝐻1,0
𝛤 (𝛺),

that

∫
𝛺

𝛁𝑢∗ ⋅ 𝛁𝜂 + 𝑎 ∑
𝛾∈𝒢 ∫

𝛾

𝑢∗
𝑠𝜂𝑠 = ∫

𝛺

𝑓𝜂, (2.1.15)

for all 𝜂 ∈ 𝐶∞
0 (𝛺). This result does not require the pattern 𝒢 to be regular.

By the Density Result, we know that if the pattern is regular, then the above equation
holds for all 𝜂 ∈ 𝐻1,0

𝛤 (𝛺), which gives both the uniqueness and existence for 𝑢∗. We claim
that in this situation the PDE of 𝑢∗ takes the form

⎧⎪
⎪
⎨
⎪
⎪⎩

−𝛥𝑢∗(x) = 𝑓(x), x ∈ 𝛺\𝛤 ,

𝑢∗(x) satisfies Road Pattern Condition, x ∈ 𝛤 ,

𝑢|∂𝛺 ≡ 0,

(2.1.16)

where the Road Pattern Condition is described in the following list:
1. In the interior of each arc 𝛾 ∈ 𝒢, if 𝑠 represents a unit speed representation and 𝑛

a unit normal field on 𝛾 , then locally the domain is split into two by the arc, and
we may call the one directed by 𝑛 positive, and another negative. In this arc, 𝑢|𝛾
pointwise satisfies 𝑢+ = 𝑢− and 𝑎𝑢𝑠𝑠 = ∂𝑢−

∂𝑛 − ∂𝑢+

∂𝑛 ;
2. 𝑢|𝛾 (𝑉 ) = 0 for all 𝑉 ∈ 𝛾 ∩ ∂𝛺;
3. If 𝑉 is contained in 𝛺, and 𝛾, 𝛾′ ∈ 𝒢 are two arcs that end at it, then 𝑢|𝛾 (𝑉 ) =

𝑢|𝛾′(𝑉 );
4. For 𝑉 ∈ 𝛺, if 𝒢𝑉 is the collection of arcs that end at it, then we have

∑
𝛾∈𝒢𝑉

𝑢𝑠𝛾 (𝑉 ) = 0,

where 𝑠𝛾 is the arc-length parametrization starting from 𝑉 ;
5. According to elementary geometry, by introducing several “ghost” curves, the pat-

tern 𝒢 (if it is regular, but it still holds even if it is not regular near nodes on the
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outer boundary ∂𝛺) will split a 𝐶1 subdomain 𝛺′ ⊂⊂ 𝛺 into several piecewise
𝐶1 subdomains. On these ghost curves, the solution is considered to satisfy “no-
effect” condition: 𝑢+ = 𝑢−, and ∂𝑢−

∂𝑛 ≡ ∂𝑢+

∂𝑛 . By classical elliptic theory, we know
that such boundary condition has no effect, and the solution is simply smooth across
the corresponding boundary, which implies that the choice of “ghost” curves is not
intrinsic in studying the problem.

Let 𝑣 be some piecewise 𝐶2 and continuous function on 𝛺 that satisfies (2.1.16).
Multiplying 𝜂 ∈ 𝐶∞

0 (𝛺) to −𝛥𝑣 = 0, and do integration by parts on each subdomain
obtained by splitting 𝑠𝑢𝑝𝑝{𝜂} ⊂⊂ 𝛺𝜂 ⊂⊂ 𝛺 using 𝒢 and some “ghost” curves described
in 5.. This will give

∫
𝛺

𝛁𝑣 ⋅ 𝛁𝜂 − ∑
𝛾∈𝒢∪{“Ghost” curves} ∫

𝛾

𝜂 (
∂𝑣−

∂𝑛 − ∂𝑣+

∂𝑛 ) = ∫
𝛺

𝑓𝜂.

Noticing that the second term in the left hand side equals

∑
𝛾∈𝒢 ∫

𝛾

𝜂 (
∂𝑣−

∂𝑛 − ∂𝑣+

∂𝑛 ) = 𝑎 ∑
𝛾∈𝒢 ∫

𝛾

𝑣𝑠𝑠𝜂

= −𝑎 ∑
𝛾∈𝒢

⎛
⎜
⎜
⎝
∫
𝛾

𝑣𝑠𝜂𝑠 + 𝑣𝑠(𝑉 𝛾
2 )𝜂(𝑉 𝛾

2 ) − 𝑣𝑠(𝑉 𝛾
1 )𝜂(𝑉 𝛾

1 )
⎞
⎟
⎟
⎠

= −𝑎 ∑
𝛾∈𝒢 ∫

𝛾

𝑣𝑠𝜂𝑠 + 0.

Therefore, formally we derive that 𝑣 satisfies (2.1.15).

2.2 A Convergence Rate Result

2.2.1 A Heuristic Computation of the Expansion Speed

In the article [22], Li and Wang proposed several effective boundary conditions and
analyzed their effects on the asymptotic expansion speed of the solutions to F-KPP equa-
tions. Let us now focus on the original equation

⎧⎪
⎨
⎪⎩

𝑢𝑡(x, 𝑡) = 𝛁 (�̄�𝛁𝑢) (x, 𝑡) + 𝑢(1 − 𝑢) ≕ 𝛁 (�̄�𝛁𝑢) (x, 𝑡) + 𝑓(𝑢), (x, 𝑡) ∈ ℝ2 × ℝ+,

𝑢(x, 0) = 𝑔(x) ∈ 𝐶∞
0 (ℝ2),

(2.2.1)
where �̄� = �̄�(𝑦) = 𝜎 if 0 < 𝑦 < 𝛿, and = 1 otherwise, and ‖𝑔‖∞ ⩽ 1. When 𝜎𝛿 → 𝑎 > 0
as 𝛿 → 0, according to Li and Wang’s theory, there will arise a road effective boundary
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condition

𝑎𝑢𝑥𝑥 = 𝑢−
𝑦 − 𝑢+

𝑦

on 𝑦 = 0. Moreover, the expansion speed of the effective model on 𝑥-direction will be

2 < 𝑐∗(𝑎) = 2√2
√3𝑎

√√1 + 3𝑎2 − 1
(

1 + √1 + 3𝑎2 − 1
3 )

= 𝑂(√𝑎).

This is a nice result, but when we talk about the effective model when 𝜎𝛿 → ∞, the
asymptotic speed becomes 2, which is a weird thing because there should have been a
very large propagation speed.

The idea is to use the following effective model to approximate (2.2.1): let 𝑣 satisfy

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑣𝑡(x, 𝑡) = 𝛥𝑣(x, 𝑡) + 𝑣(1 − 𝑣), (x, 𝑡) ∈ ℝ2 × ℝ+, 𝑦 ≠ 0,

𝑎𝑣𝑥𝑥(𝑥, 0, 𝑡) = 𝑣−
𝑦 (𝑥, 0, 𝑡) − 𝑣+

𝑦 (𝑥, 0, 𝑡), 𝑥 ∈ ℝ, 𝑡 > 0,

𝑣−(𝑥, 0, 𝑡) = 𝑣+(𝑥, 0, 𝑡), 𝑥 ∈ ℝ, 𝑡 > 0,

𝑣(x, 0) = 𝑔(x) ∈ 𝐶∞
0 (ℝ2).

(2.2.2)

where 𝑎 = 𝜎𝛿.
Recalling the definition of the expansion speed: for 𝑤 some function on ℝ2 × ℝ+,

the asymptotic expansion speed 𝑐∗(𝑤) along 𝑥-direction of 𝑤 satisfies

∀𝑐 > 𝑐∗, lim
𝑡→∞

sup
|𝑥|⩾𝑐𝑡

𝑤(𝑥, 𝑦, 𝑡) = 0, (2.2.3)

and

∀0 < 𝑐 < 𝑐∗, lim
𝑡→∞

inf
|𝑥|⩽𝑐𝑡

𝑤(𝑥, 𝑦, 𝑡) = 1. (2.2.4)

Now, if we have proper closeness between 𝑢 and 𝑣, we may have

𝑐∗(𝑢) ≈ 𝑐∗(𝑣) = 𝑐∗(𝜎𝛿) = 𝑂(√𝜎𝛿).

2.2.2 Some Estimates

Letting 𝑤 = 𝑢 − 𝑣, we define for 𝜙 ∈ 𝐶∞
0 (ℝ2 × [0, 𝑇 )) (0 < 𝑇 < ∞ and 𝑄𝑇 =

ℝ × (0, 𝑇 ))

�̃�(𝜙) = ∫
𝑄𝑇

𝑤𝑡𝜙 + ∫
𝑄𝑇

𝛁𝑤𝛁𝜙 + 𝑎 ∫
{𝑦=0}×(0,𝑇 )

𝑤𝑥𝜙𝑥 + ∫
𝑄𝑇

𝑐(x)𝑤𝜙,

where 𝑐(x) = (𝑓(𝑢)−𝑓(𝑣))/(𝑢−𝑣) is a bounded function with bound 𝑀 when 0 ⩽ 𝑢, 𝑣 ⩽ 1.
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According to (2.2.1) and (2.2.2), we have

�̃�(𝜙) =
𝑇

∫
0

⎛
⎜
⎜
⎝
𝑎 ∫

ℝ

𝑢𝑥𝜙𝑥 − (𝜎 − 1) ∫
ℝ×(0,𝛿)

𝛁𝑢𝛁𝜙
⎞
⎟
⎟
⎠

𝑑𝑡

=
𝑇

∫
0

𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 𝑑𝑡,

where

𝐼 = 𝜎
∞

∫
−∞

𝛿

∫
0

𝑢𝑥𝜙𝑥(𝑥, 0, 𝑡) − 𝑢𝑥𝜙𝑥(𝑥, 𝑦, 𝑡)𝑑𝑦𝑑𝑥,

𝐼𝐼 = −𝜎
∞

∫
−∞

𝛿

∫
0

𝑢𝑦𝜙𝑦(𝑥, 𝑦, 𝑡)𝑑𝑦𝑑𝑥,

𝐼𝐼𝐼 =
∞

∫
−∞

𝛿

∫
0

𝛁𝑢𝛁𝜙(𝑥, 𝑦, 𝑡)𝑑𝑦𝑑𝑥.

To evaluate the above quantities, we need to establish some estimates on 𝑢. Before that,
let us recall the following two theorems.
Theorem 2.2: (Theorem 2.3. in [22]) For any fixed 𝑇 > 0, (2.2.1) admits a unique
bounded solution

𝑢 ∈ 𝑊 1,1
2 (ℝ2 × (0, 𝑇 )) ∩ 𝐶([0, 𝑇 ]; 𝐿2

𝑙𝑜𝑐(ℝ2)).

Moreover, 0 ⩽ 𝑢 ⩽ 1,

𝑢 ∈ 𝐶∞
𝑙𝑜𝑐 ((ℝ2\ℝ × (0, 𝛿)) × (0, 𝑇 ]) ∩ 𝐶∞

𝑙𝑜𝑐 (ℝ × (0, 𝛿) × (0, 𝑇 ]) ∩ 𝐶𝛼,𝛼/2
𝑙𝑜𝑐 (ℝ2 × (0, 𝑇 ]) ,

for some 𝛼 ∈ (0, 1), and the following “transmission condition” is satisfied.

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑢(𝑥, 𝛿+, 𝑡) = 𝑢(𝑥, 𝛿−, 𝑡), 𝑥 ∈ ℝ, 𝑡 ∈ [0, 𝑇 ],

𝑢(𝑥, 0+, 𝑡) = 𝑢(𝑥, 0−, 𝑡), 𝑥 ∈ ℝ, 𝑡 ∈ [0, 𝑇 ],

𝑢𝑦(𝑥, 𝛿+, 𝑡) = 𝜎𝑢𝑦(𝑥, 𝛿−, 𝑡), 𝑥 ∈ ℝ, 𝑡 ∈ (0, 𝑇 ],

𝜎𝑢𝑦(𝑥, 0+, 𝑡) = 𝑢𝑦(𝑥, 0−, 𝑡), 𝑥 ∈ ℝ, 𝑡 ∈ (0, 𝑇 ].

(2.2.5)

And on the regularity of 𝑣, we have:
Theorem 2.3: (Theorem 4.1. (i) in [22]) The solution 𝑣 satisfies

𝑣± ∈ 𝐶∞
(ℝ2

± × (0, ∞))
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and the initial condition is fulfilled in the 𝐿2-sense.
Lemma 2.12: For fixed 𝑇 > 0, the solution 𝑢 of (2.2.1) satisfies

max
0⩽𝑡⩽𝑇 ∫

ℝ2

𝑢2(x, 𝑡)𝑑x + 2
𝑇

∫
0

∫
ℝ2

�̄�|𝛁𝑢(x, 𝑡)|2𝑑x𝑑𝑡 ⩽ 𝐶(𝑇 ) ∫
ℝ2

𝑔2(x)𝑑x; (2.2.6)

max
0⩽𝑡⩽𝑇 ∫

ℝ2

�̄�|𝛁𝑢(x, 𝑡)|2𝑑x +
𝑇

∫
0

∫
ℝ2

𝑢2
𝑡 (x, 𝑡)𝑑x𝑑𝑡

⩽ 𝐶(𝑇 )
⎛
⎜
⎜
⎝

∫
ℝ2

𝑔2(x)𝑑x + ∫
ℝ2

�̄�|𝛁𝑔(x)|2𝑑x
⎞
⎟
⎟
⎠

;

(2.2.7)

and
𝑇

∫
0

∫
ℝ2

𝑡𝑢2
𝑡 (x, 𝑡)𝑑x𝑑𝑡 + max

0⩽𝑡⩽𝑇 ∫
ℝ2

𝑡�̄�|𝛁𝑢(x, 𝑡)|2𝑑x ⩽ 𝐶(𝑇 ) ∫
ℝ2

𝑔2(x)𝑑x. (2.2.8)

Remark: The complete proof of this and following lemmas essentially require an approx-
imation to 𝑢 by solutions to the equation with mollified coefficients. In those cases, the
integrals and derivatives are considered in the classical sense, and all derivatives of the
solutions satisfy exponential decay as spatial variables go to infinity.
Proof: Multiplying the PDE in (2.2.1) by 𝑢 and integrating over ℝ2 × (0, 𝑡) for any fixed
𝑡 ∈ (0, 𝑇 ], we are led to

1
2

𝑡

∫
0

𝑑
𝑑𝑠 ∫

ℝ2

𝑢(x, 𝑠)𝑑x𝑑𝑠 +
𝑡

∫
0

∫
ℝ2

�̄�|𝛁𝑢(x, 𝑠)|2𝑑x𝑑𝑠

=
𝑡

∫
0

∫
ℝ2

𝑢2(x, 𝑠)(1 − 𝑢(x, 𝑠))𝑑x𝑑𝑠,

from which it follows

∫
ℝ2

𝑢2(x, 𝑡)𝑑x + 2
𝑡

∫
0

∫
ℝ2

�̄�|𝛁𝑢(x, 𝑠)|2𝑑x𝑑𝑠 ⩽ 2
𝑡

∫
0

∫
ℝ2

𝑢2(x, 𝑠)𝑑x𝑑𝑠 + ∫
ℝ2

𝑔2(x)𝑑x.

An application of the Gronwall’s inequality yields (2.2.6). To see (2.2.7), we multiply the
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PDE by 𝑢𝑡 and obtain

∫
ℝ2

𝑢2
𝑡 (x, 𝑡)𝑑x + ∫

ℝ2

�̄�𝛁𝑢(x, 𝑡) ⋅ 𝛁𝑢𝑡(x, 𝑡)𝑑x

= ∫
ℝ2

𝑢(x, 𝑡)(1 − 𝑢(x, 𝑡))𝑢𝑡(x, 𝑡)𝑑x

⩽ 1
2 ∫

ℝ2

𝑢2
𝑡 (x, 𝑡)𝑑x + 1

2 ∫
ℝ2

𝑢2(x, 𝑡)𝑑x.

That is,
1
2 ∫

ℝ2

𝑢2
𝑡 (x, 𝑡)𝑑x + 1

2
𝑑
𝑑𝑡 ∫

ℝ2

�̄�|𝛁𝑢(x, 𝑡)|2𝑑x ⩽ 1
2 ∫

ℝ2

𝑢2(x, 𝑡)𝑑x.

As a result,
𝑡

∫
0

∫
ℝ2

𝑢2
𝑡 (x, 𝑠)𝑑x𝑑𝑠 + ∫

ℝ2

�̄�|𝛁𝑢(x, 𝑡)|2𝑑x

⩽
𝑡

∫
0

∫
ℝ2

𝑢2(x, 𝑠)𝑑x𝑑𝑠 + ∫
ℝ2

�̄�|𝛁𝑔(x)|2𝑑x

⩽ 𝐶(𝑇 )
⎛
⎜
⎜
⎝

∫
ℝ2

𝑔2(x)𝑑x + ∫
ℝ2

�̄�|𝛁𝑔(x)|2𝑑x
⎞
⎟
⎟
⎠

,

where we have used (2.2.6). This proves (2.2.7). We now multiply the PDE by 𝑡𝑢𝑡, then it
holds

∫
ℝ2

𝑡𝑢2
𝑡 𝑑x + ∫

ℝ2

𝑡�̄�𝛁𝑢 ⋅ 𝛁𝑢𝑡𝑑x = ∫
ℝ2

𝑢(1 − 𝑢)𝑡𝑢𝑡𝑑x.

Consequently,

∫
ℝ2

𝑡𝑢2
𝑡 𝑑x + 1

2
𝑑
𝑑𝑡 ∫

ℝ2

𝑡�̄�|𝛁𝑢|2𝑑x

⩽ 1
2 ∫

ℝ2

𝑡𝑢2𝑑x + 1
2 ∫

ℝ2

𝑡𝑢2
𝑡 𝑑x + 1

2 ∫
ℝ2

�̄�|𝛁𝑢|2𝑑x.

Recall (2.2.6). Upon a rearrangement of terms and an integration in 𝑡, we see that (2.2.8)
holds. ∎
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Lemma 2.13: For any fixed 𝑇 > 0 and 𝜎 > 0, the solution 𝑢 of (2.2.1) satisfies
𝑇

∫
0

∫
ℝ2

�̄�|𝛁𝑢𝑥|2𝑑x𝑑𝑡 ⩽ 𝐶(𝑇 ) ∫
ℝ2

|𝛁𝑔|2𝑑x. (2.2.9)

We also have
𝑇

∫
0

∫
ℝ2

�̄�|𝛁𝑢𝑥𝑥|2𝑑x𝑑𝑡 ⩽ 𝐶(𝑇 ) ∫
ℝ2

|𝛁2𝑔|2𝑑x. (2.2.10)

In addition, if 𝜎 ⩾ 𝑂(1), and 𝜎 = 𝑂(1/𝛿𝛼) for some 𝛼 ⩾ 1, then

𝛿𝛼−1
𝑇

∫
0

∫
ℝ2

�̄�|𝑢𝑦𝑦|2𝑑x𝑑𝑡 ⩽ 𝑂(1). (2.2.11)

Moreover, if 𝑔 ≡ 0 in ℝ × (−𝜅, 𝜅) for some 𝜅 > 0, then we have for general 𝜎 ⩾ 𝑂(1),
𝑇

∫
0

∫
ℝ2

�̄�|𝑢𝑦𝑦|2𝑑x𝑑𝑡 ⩽ 𝑂(1). (2.2.12)

Proof: Differentiating the PDE (2.2.1) with respect to 𝑥, we have

(𝑢𝑥)𝑡 − 𝛁 (�̄�𝛁𝑢𝑥) = (1 − 2𝑢)𝑢𝑥. (2.2.13)

Multiplying both sides by 𝑢𝑥 and integrating over ℝ2 × (0, 𝑡), we obtain

1
2

𝑡

∫
0

𝑑
𝑑𝑠 ∫

ℝ2

𝑢2
𝑥(x, 𝑠)𝑑x𝑑𝑠 +

𝑡

∫
0

∫
ℝ2

�̄� |𝛁𝑢𝑥|
2 (x, 𝑠)𝑑x𝑑𝑠 ⩽

𝑡

∫
0

∫
ℝ2

𝑢2
𝑥(x, 𝑠)𝑑x𝑑𝑠,

from which it follows

1
2 ∫

ℝ2

𝑢2
𝑥(x, 𝑠)𝑑x +

𝑡

∫
0

∫
ℝ2

�̄� |𝛁𝑢𝑥|
2 (x, 𝑠)𝑑x𝑑𝑠

⩽ 1
2 ∫

ℝ2

𝑔2
𝑥(x, 𝑠)𝑑x +

𝑡

∫
0

∫
ℝ2

𝑢2
𝑥(x, 𝑠)𝑑x𝑑𝑠.

Now, (2.2.9) follows upon an application of Gronwall’s inequality.
Similar to the above arguments, we differentiate the PDE (2.2.1) twice with respect

to 𝑥, and obtain

(𝑢𝑥𝑥)𝑡 − 𝛁 (�̄�𝛁𝑢𝑥𝑥) = (1 − 2𝑢)𝑢𝑥𝑥 − 2𝑢2
𝑥. (2.2.14)
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Multiplying both sides by 𝑢𝑥𝑥 and integrating over ℝ2 × (0, 𝑡), we obtain

1
2

𝑡

∫
0

𝑑
𝑑𝑠 ∫

ℝ2

(𝑢𝑥𝑥)
2 (x, 𝑠)𝑑x𝑑𝑠 +

𝑡

∫
0

∫
ℝ2

�̄� |𝛁𝑢𝑥𝑥|
2 (x, 𝑠)𝑑x𝑑𝑠

⩽
𝑡

∫
0

∫
ℝ2

(𝑢𝑥𝑥)
2 (x, 𝑠)𝑑x𝑑𝑠 − 2

𝑡

∫
0

∫
ℝ2

𝑢2
𝑥𝑢𝑥𝑥𝑑x𝑑𝑡,

Observing that by an integration by parts, we have (this is done in the mollified cases)

∫
ℝ2

𝑢2
𝑥𝑢𝑥𝑥𝑑x = −2 ∫

ℝ2

𝑢2
𝑥𝑢𝑥𝑥𝑑x,

and then

1
2

𝑡

∫
0

𝑑
𝑑𝑠 ∫

ℝ2

(𝑢𝑥𝑥)
2 (x, 𝑠)𝑑x𝑑𝑠 +

𝑡

∫
0

∫
ℝ2

�̄� |𝛁𝑢𝑥𝑥|
2 (x, 𝑠)𝑑x𝑑𝑠 ⩽

𝑡

∫
0

∫
ℝ2

(𝑢𝑥𝑥)
2 (x, 𝑠)𝑑x𝑑𝑠.

Applying Gronwall’s inequality to the above inequality, we obtain (2.2.10).
As for the last estimate, by the equation we have that for almost every point

𝑢𝑦𝑦 = 𝑢𝑡
�̄� − 𝑢𝑥𝑥 − 𝑢(1 − 𝑢)

�̄� .

Then we have

�̄�𝑢2
𝑦𝑦 ⩽ 3

(
𝑢2

𝑡
�̄� + �̄�𝑢2

𝑥𝑥 + 𝑢2

�̄� )
. (2.2.15)

This combining with (2.2.6), (2.2.7) and (2.2.9) implies that
𝑇

∫
0

∫
ℝ2

�̄�𝑢2
𝑦𝑦𝑑x𝑑𝑡 ⩽ 𝐶

⎛
⎜
⎜
⎝

∫
ℝ2

�̄�|𝛁𝑔|2𝑑x + ∫
ℝ2

𝑔2𝑑x
⎞
⎟
⎟
⎠

⩽ 𝛿1−𝛼𝐶′
⎛
⎜
⎜
⎝
𝛿𝛼−1 + 𝜎𝛿𝛼

+∞

∫
−∞

𝛿

∫
0

𝛿−1|𝛁𝑔|2𝑑𝑦𝑑𝑥
⎞
⎟
⎟
⎠

⩽ 𝐶″𝛿1−𝛼.
Notice that when 𝑔 ≡ 0 in ℝ × (−𝜅, 𝜅), then when 𝛿 > 0 is small, we have

∫
ℝ2

�̄�|𝛁𝑔|2𝑑x = ∫
ℝ2

|𝛁𝑔|2𝑑x,

which is automatically bounded by a number regardless of 𝛿. ∎
The ensuing lemma concerns about the boundedness of 𝐼 , 𝐼𝐼 and 𝐼𝐼𝐼 with respect

to ‖𝜙‖𝑊 1,1
2 (ℝ2×(0,𝑇 )).
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Lemma 2.14: Suppose 𝑂(1) ⩽ 𝜎 ⩽ 𝑂(𝛿−(1+𝛼)) for some 0 < 𝛼 < 1/2, then we have
𝑇

∫
0

|𝐼|𝑑𝑡 ⩽ 𝜎1/2𝛿 𝐶(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) ,

𝑇

∫
0

|𝐼𝐼|𝑑𝑡 ⩽ 𝜎1/2𝛿1−𝛼/2 𝐶′(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) ,

𝑇

∫
0

|𝐼𝐼𝐼|𝑑𝑡 ⩽ 𝜎−1/2 𝐶″(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) .

(2.2.16)

Moreover, if 𝑔 ≡ 0 in ℝ × (−𝜅, 𝜅), we have for 𝑂(1) ⩽ 𝜎 ⩽ 𝑜(𝛿−2),
𝑇

∫
0

|𝐼|𝑑𝑡 ⩽ 𝜎1/2𝛿 𝐶(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) ,

𝑇

∫
0

|𝐼𝐼|𝑑𝑡 ⩽ 𝜎1/2𝛿 𝐶′(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) ,

𝑇

∫
0

|𝐼𝐼𝐼|𝑑𝑡 ⩽ 𝜎−1/2 𝐶″(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) .

(2.2.17)

Proof: By using Integration by Parts, we have

|𝐼| =
|
|
|
||
𝜎

∞

∫
−∞

𝛿

∫
0

𝑢𝑥𝑥𝜙(𝑥, 0, 𝑡) − 𝑢𝑥𝑥𝜙(𝑥, 𝑦, 𝑡)𝑑𝑦𝑑𝑥
|
|
|
||

=
|
|
|
||
𝜎

∞

∫
−∞

𝛿

∫
0

[𝑢𝑥𝑥(𝑥, 0, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑦, 𝑡)] 𝜙(𝑥, 0, 𝑡) + 𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) [𝜙(𝑥, 0, 𝑡) − 𝜙(𝑥, 𝑦, 𝑡)] 𝑑𝑦𝑑𝑥
|
|
|
||

⩽ 𝜎𝛿
∞

∫
−∞

𝛿

∫
0

|𝑢𝑥𝑥𝑦|𝑑𝑦|𝜙|(𝑥, 0, 𝑡)𝑑𝑥 + 𝜎
∞

∫
−∞

𝛿

∫
0

|𝑢𝑥𝑥|𝑑𝑦
𝛿

∫
0

|𝜙𝑦|𝑑𝑦𝑑𝑥

⩽ 𝜎1/2𝛿3/2
⎛
⎜
⎜
⎝

∞

∫
−∞

𝛿

∫
0

𝜎|𝑢𝑥𝑥𝑦|2𝑑𝑦𝑑𝑥
⎞
⎟
⎟
⎠

1/2
⎛
⎜
⎜
⎝

∞

∫
−∞

𝜙2𝑑𝑥
⎞
⎟
⎟
⎠

1/2

+ 𝜎1/2𝛿
⎛
⎜
⎜
⎝

∞

∫
−∞

𝛿

∫
0

𝜎|𝑢𝑥𝑥|2𝑑𝑦𝑑𝑥
⎞
⎟
⎟
⎠

1/2
⎛
⎜
⎜
⎝

∞

∫
−∞

𝛿

∫
0

𝜙2
𝑦𝑑𝑦𝑑𝑥

⎞
⎟
⎟
⎠

.
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Integrating both sides from 0 to 𝑇 , using Lemma 2.12 and 2.13 and applying trace theorem,
we have

𝑇

∫
0

|𝐼|𝑑𝑡 ⩽ 𝜎1/2𝛿 𝐶(𝑇 ) ‖𝑔‖𝐻2(ℝ2) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) . (2.2.18)

Now, we have

|𝐼𝐼| =
|
|
|
||
𝜎

∞

∫
−∞

𝛿

∫
0

𝑢𝑦(𝑥, 𝑦, 𝑡)𝜙𝑦(𝑥, 𝑦, 𝑡)𝑑𝑦𝑑𝑥
|
|
|
||

⩽
|
|
|
||
𝜎

∞

∫
−∞

𝛿

∫
0

[𝑢𝑦(𝑥, 𝑦, 𝑡) − 𝑢𝑦(𝑥, 0+, 𝑡)] 𝜙𝑦(𝑥, 𝑦, 𝑡)𝑑𝑦𝑑𝑥
|
|
|
||

+
|
|
|
||
𝜎

∞

∫
−∞

𝛿

∫
0

𝑢𝑦(𝑥, 0+, 𝑡)𝜙𝑦(𝑥, 𝑦, 𝑡)𝑑𝑦𝑑𝑥
|
|
|
||

⩽ 𝜎
∞

∫
−∞

𝛿

∫
0

|𝑢𝑦𝑦|𝑑𝑦
𝛿

∫
0

|𝜙𝑦|𝑑𝑦𝑑𝑥 +
∞

∫
−∞

𝛿

∫
0

|𝑢𝑦(𝑥, 0−, 𝑡)𝜙𝑦(𝑥, 𝑦, 𝑡)| 𝑑𝑦𝑑𝑥

⩽ 𝜎𝛿
⎛
⎜
⎜
⎝

∞

∫
−∞

𝛿

∫
0

|𝑢𝑦𝑦|2𝑑𝑦𝑑𝑥
⎞
⎟
⎟
⎠

1/2
⎛
⎜
⎜
⎝

∞

∫
−∞

𝛿

∫
0

|𝜙𝑦|2𝑑𝑦𝑑𝑥
⎞
⎟
⎟
⎠

1/2

+ 𝛿1/2
⎛
⎜
⎜
⎝

∞

∫
−∞

|𝑢−
𝑦 |2𝑑𝑥

⎞
⎟
⎟
⎠

1/2
⎛
⎜
⎜
⎝

∞

∫
−∞

𝛿

∫
0

|𝜙𝑦|2𝑑𝑦𝑑𝑥
⎞
⎟
⎟
⎠

1/2

Integrating from 0 to 𝑇 and using similar arguments to 𝐼 , we have
𝑇

∫
0

|𝐼𝐼|𝑑𝑡 ⩽ 𝜎1/2𝛿1−𝛼/2 𝐶′(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) , (2.2.19)

if 𝜎 ⩽ 𝑂(𝛿−(1+𝛼)) for some 0 < 𝛼 < 1/2. If 𝑔 ≡ 0 in ℝ × (−𝜅, 𝜅) for some small 𝜅 > 0,
we may extend the result to 𝜎 ⩽ 𝑜(𝛿−2) and

𝑇

∫
0

|𝐼𝐼|𝑑𝑡 ⩽ 𝜎1/2𝛿 𝐶′(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) . (2.2.20)

Finally, we have

|𝐼𝐼𝐼| =
|
|
|
||

∞

∫
−∞

𝛿

∫
0

𝛁𝑢𝛁𝜙𝑑𝑦𝑑𝑥
|
|
|
||

⩽ 𝜎−1/2
⎛
⎜
⎜
⎝

∫
ℝ2

�̄�|𝛁𝑢|2𝑑x
⎞
⎟
⎟
⎠

1/2 ⎛
⎜
⎜
⎝

∫
ℝ2

|𝛁𝜙|2𝑑x
⎞
⎟
⎟
⎠

1/2

,
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and so
𝑇

∫
0

|𝐼𝐼𝐼|𝑑𝑡 ⩽ 𝜎−1/2 𝐶″(𝑇 , 𝑔) ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) (2.2.21)

∎

2.2.3 The Convergence Rates

With the above lemmas, we are able to discuss the convergence rate of 𝑤 to 0 as
𝛿 → 0. At first, we define

𝐿(𝜙) = �̃�(𝑒−2𝑀𝑡𝜙)

= ∫
𝑄𝑇

𝑤𝑡𝑒−2𝑀𝑡𝜙 + ∫
𝑄𝑇

𝛁𝑤𝑒−2𝑀𝑡𝛁𝜙 + 𝑎 ∫
{𝑦=0}×(0,𝑇 )

𝑤𝑥𝑒−2𝑀𝑡𝜙𝑥 + ∫
𝑄𝑇

𝑐(x)𝑤𝑒−2𝑀𝑡𝜙

= ∫
𝑄𝑇

�̃�𝑡𝜙 + ∫
𝑄𝑇

𝛁�̃�𝛁𝜙 + 𝑎 ∫
{𝑦=0}×(0,𝑇 )

�̃�𝑥𝜙𝑥 + ∫
𝑄𝑇

(𝑐(x) + 2𝑀)�̃�𝜙.

(2.2.22)

By Lemma 2.14, we have for 𝜎 ⩽ 𝑂(𝛿−(1+𝛼)), 0 < 𝛼 < 1/2

|𝐿(𝜙)| ⩽ 𝜎1/2𝛿1−𝛼/2𝐶 ‖𝑒−2𝑀𝑡𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 ))

⩽ 𝜎1/2𝛿1−𝛼/2𝐶 ‖𝜙‖𝑊 1,0
2 (ℝ2×(0,𝑇 )) ,

(2.2.23)

for all 𝜙 ∈ 𝐶∞
0 (ℝ2 × [0, 𝑇 )). This shows that 𝐿 can be extended to the function space

𝑊 1,0
2 (ℝ2 × (0, 𝑇 )). In particular, we extend 𝐿 to a proper subspace

𝐸1,0(ℝ2×(0, 𝑇 )) = {𝑓 ∈ 𝑊 1,0
2 (ℝ2 × (0, 𝑇 )) ; 𝑓 |{𝑦=0}×(0,𝑇 ) ∈ 𝑊 1,0

2 ({𝑦 = 0} × (0, 𝑇 ))} .

It is not hard to show that both 𝑢 and 𝑣 are contained in 𝐸1,0(ℝ2 × (0, 𝑇 )), and so is �̃�. We
now have for 𝑡 ∈ (0, 𝑇 )

∫
𝑄𝑡

�̃�𝑡�̃�+∫
𝑄𝑡

|𝛁�̃�|2+𝑎 ∫
{𝑦=0}×(0,𝑡)

|�̃�𝑥|2+∫
𝑄𝑡

(𝑐(x)+2𝑀)|�̃�|2 ⩽ 𝜎1/2𝛿1−𝛼/2𝐶 ‖𝑒−2𝑀𝑡�̃�‖𝑊 1,0
2 (𝑄𝑡)

.

Observe that

∫
𝑄𝑡

�̃�𝑡�̃�𝑑x𝑑𝑠 =
𝑡

∫
0

1
2

𝑑
𝑑𝑡 ∫

ℝ2

|�̃�|2𝑑x𝑑𝑠

= 1
2 ∫

ℝ2

|�̃�|2(x, 𝑡)𝑑x − 1
2 ∫

ℝ2

|𝑔 − 𝑔|2(x)𝑑x

= 1
2 ∫

ℝ2

|�̃�|2(x, 𝑡)𝑑x.
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This shows that

max
𝑡∈[0,𝑇 ]

1
2 ∫

ℝ2

|�̃�|2+ ∫
𝑄𝑇

|𝛁�̃�|2+𝑎 ∫
{𝑦=0}×(0,𝑇 )

|�̃�𝑥|2+ ∫
𝑄𝑇

𝑀|�̃�|2 ⩽ 𝜎1/2𝛿1−𝛼/2𝐶 ‖𝑒−2𝑀𝑡�̃�‖𝑊 1,0
2 (𝑄𝑇 ) .

(2.2.24)
By using |𝛼𝛽| ⩽ 𝜖|𝛼|2 + 1

4𝜖 |𝛽|2 for 𝜖 > 0, we have

max
𝑡∈[0,𝑇 ]

1
2 ∫

ℝ2

|�̃�|2 + 1
2 ∫

𝑄𝑇

|𝛁�̃�|2 + 𝑎 ∫
{𝑦=0}×(0,𝑇 )

|�̃�𝑥|2 + 𝑀
2 ∫

𝑄𝑇

|�̃�|2 ⩽ 𝐶′ 𝜎𝛿2−𝛼. (2.2.25)

This gives the following convergence rate result:
Theorem 2.4: Let 𝑢 be the unique weak solution to (2.2.1) and 𝑣 the one to (2.2.2).
Then, we have for small 𝛿 > 0, if 𝑂(1) ⩽ 𝜎 ⩽ 𝑂(𝛿−(1+𝛼)) for some 0 < 𝛼 < 1/2, then

max
𝑡∈[0,𝑇 ]

⎛
⎜
⎜
⎝

∫
ℝ2

|𝑢 − 𝑣|2(x, 𝑡)𝑑x
⎞
⎟
⎟
⎠

1/2

⩽ 𝐶(𝑇 ) 𝜎1/2𝛿1−𝛼/2. (2.2.26)

Furthermore, if the initial value 𝑔 ≡ 0 on the tube ℝ × (−𝜅, 𝜅) for some 𝜅 > 0, then for
𝑂(1) ⩽ 𝜎 ⩽ 𝑜(𝛿−2), we may replace “𝜎1/2𝛿1−𝛼/2” by “𝜎1/2𝛿”.
Corollary 2.2: Suppose 𝜎𝛿 → 𝑎 ∈ (0, ∞) as 𝛿 → 0+, then

‖𝑢 − 𝑣‖𝐶([0,𝑇 ];𝐿2(ℝ2)) ⩽ 𝐶(𝑇 )𝛿1/2. (2.2.27)

Remark:
i. The above estimates give the evidence for the spatially global convergence of 𝑢 to

𝑣 as 𝛿 → 0, and 𝜎𝛿 → 𝑎 ∈ (0, ∞). When 𝑂(𝛿−1) << 𝜎 < 𝑂(𝛿−(1+𝛼)) for some
1/2 > 𝛼 > 0, we also have arbitrary closeness between 𝑢 and 𝑣 when 𝛿 > 0 is small
and within a fixed time interval. These estimates are essentially based on evaluating
the source term (which is a functional)

< 𝐹 , 𝜙 >=
𝑇

∫
0

⎛
⎜
⎜
⎝
𝑎 ∫

ℝ

𝑢𝑥𝜙𝑥 − (𝜎 − 1) ∫
ℝ×(0,𝛿)

𝛁𝑢𝛁𝜙
⎞
⎟
⎟
⎠

𝑑𝑡, 𝜙 ∈ 𝐶∞
0 (ℝ2 × [0, 𝑇 )).

Any further estimation of the error between 𝑢 and 𝑣 cannot ignore the influence of
this term. However, since there is no evidence for the smallness of 𝑢, 𝛁𝑢, 𝛁𝑢𝑥 and
𝛁𝑢𝑥𝑥 for large 𝑡 > 0, we are not able to establish a time global estimate;

ii. Another interesting observation is that the initial value 𝑔 influences the convergence
rate of 𝑢 to 𝑣 as 𝛿 → 0+ substantially when 𝜎 >> 𝑂(𝛿−1): When 𝑔 ≡ 0 near
ℝ × (−𝜅, 𝜅) for some small 𝜅 > 0, then the convergence rates can be strengthened
to 𝜎1/2𝛿.
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CHAPTER 3 HOMOGENIZATION OF ENHANCING THIN
LAYERS

3.1 Derivation of the Ultimate Effective Model

From now on, we assume that 𝒢 is regular on the flat torus 𝕋 2, and all 𝒢, 𝛤1, 𝑅𝛿 and
𝑅+

𝛿 are considered as distributed periodically on ℝ2. Notice that the definitions of 𝛤1, 𝑅𝛿

and 𝑅+
𝛿 are dependent of the choice of coordinate system on the plane.

3.1.1 Method I: a traditional treatment

We start with the traditional method I. It is clear that for each 𝛿, 𝐴𝜖
𝛿(x) = �̄�(𝜖−1x)𝐼2×2

is uniformly elliptic with lower bound 1 and upper bound 𝜎 = 𝑂(1/𝛿). Therefore, we may
directly apply classical results, and obtain a model 𝑢𝛿,0 as 𝜖 → 0, which satisfies

⎧⎪
⎨
⎪⎩

−𝛁 ⋅ (𝛴𝛿𝛁𝑢𝛿,0) = 𝑓 ,

𝑢𝛿,0 ∈ 𝐻1
0 (𝛺),

(3.1.1)

where 𝛴𝛿 is a constant positive definite matrix. Furthermore, we may write

(𝛴𝛿)𝑘,𝑙 = ∫2
�̄�(x)(𝛁𝑤𝑘 + 𝑒𝑘) ⋅ 𝑒𝑙, 𝑘, 𝑙 = 1, 2, (3.1.2)

with 𝑤𝑘 satisfying

⎧⎪
⎨
⎪⎩

𝛁 ⋅ (�̄�(𝛁𝑤𝑘 + 𝑒𝑘)) = 0,

𝑤𝑘 is 1-periodic and ∫2𝑤𝑘 = 0.
(3.1.3)

Here we will call 𝑤𝑘’s correctors, and (3.1.3) will be called corrector equations. The
proper function space 𝐻1

𝑝𝑒𝑟(2) for the above equation should be the natural completion
of 1-periodic 𝐶∞

𝑏 (ℝ2) functions under the norm of 𝐻1(2). Notice that this function
space is different from 𝐻1(2).

With this function space, by classical theories, we define the weak solution to (3.1.3)
to be the element 𝑤𝑘 ∈ 𝐻1

𝑝𝑒𝑟(2) satisfying

∫2
�̄�𝛁𝑣 ⋅ (𝛁𝑤𝑘 + 𝑒𝑘) = 0, (3.1.4)

for every 𝑣 ∈ 𝐻1
𝑝𝑒𝑟(2) and ∫2𝑤𝑘 = 0. According to Riesz representation theorem, we

have the existence and uniqueness of a weak solution 𝑤𝑘.
To understand the convergence of 𝑢𝛿,0 as 𝛿 → 0, it is needed to establish uniform
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ellipticity of the tensor family {𝐴𝛿}𝛿>0. The latter one is determined by the correctors, and
thus analysing the corrector equations becomes a crucial problem that opens our further
analysis.
Lemma 3.1: For 𝑘 = 1, 2, we have

∫2
�̄�|𝛁𝑤𝑘|2 ⩽ 𝑂(1), (3.1.5)

with the bound independent of small 𝛿 > 0.
Proof: According to (3.1.4), we have by setting 𝑣 = 𝑤𝑘,

∫2
�̄�|𝛁𝑤𝑘|2 = ∫2

�̄�𝛁𝑤𝑘 ⋅ 𝑒𝑘.

Using the inequality |𝑎𝑏| ⩽ 𝜖𝑎2 + 𝑏2

4𝜖 for every 𝜖, 𝑎, 𝑏 > 0, we know that

∫2
�̄�|𝛁𝑤𝑘|2 ⩽ 8 ∫2

�̄� = 𝑂(1).

∎
Now, we are ready to discuss the limit of 𝑤𝑘. After passage to a subsequence, we

know that 𝑤𝑘 will weakly converge to some �̂�𝑘 in 𝐻1
𝑝𝑒𝑟(2) as 𝛿 → 0. To see the equation

that �̂�𝑘 satisfies, we focus on one representative cell 2 = (0, 1)2 + � with � ∈ ℝ2, and
define

�̃�𝑘 = 𝑤𝑘 + 𝑥𝑘, 𝑘 = 1, 2.

Clearly, by Lemma 3.1, �̃�𝑘 is also uniformly bounded in 𝐻1(2), and so as 𝛿 → 0, after
passing to a subsequence, it will converge to some �̄�𝑘 = �̂�𝑘 + 𝑥𝑘. Moreover, it satisfies
for every x ∈ 2,

𝛁 ⋅ (�̄�𝛁�̃�𝑘)(x) = 0.

Writing the above equation in the sense of weak solutions, we have

∫2
�̄�𝛁𝜂 · 𝛁�̃�𝑘 = 0,

for every 𝜂 ∈ 𝐶∞
0 (2). By previous work, we know that as 𝛿 → 0, the above equation

becomes

∫2
𝛁𝜂 · 𝛁�̄�𝑘 + 𝑎 ∫

𝛤1

𝜂𝑠(�̄�𝑘)𝑠 = 0.
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Varying �, this equation forces �̄�𝑘 to satisfy the following integral equation

∫2
𝛁𝑣 · 𝛁�̄�𝑘 + 𝑎 ∫

𝛤1

𝑣𝑠(�̄�𝑘)𝑠 = 0, (3.1.6)

where 𝑣 is any 1-periodic 𝐶1
𝑏 (ℝ2) function, and thus �̂�𝑘 must satisfy

∫2
𝛁𝑣 · 𝛁�̂�𝑘 + 𝑎 ∫

𝛤1

𝑣𝑠(�̂�𝑘)𝑠 + 𝑎 ∫
𝛤1

𝑣𝑠(𝑥𝑘)𝑠 = 0. (3.1.7)

To understand the above equality, a proper function space 𝑍1,𝑝𝑒𝑟
𝛤1

(2) for �̂�𝑘 should be
defined:

𝑍1,𝑝𝑒𝑟
𝛤1

(2) ≔
⎧⎪
⎨
⎪⎩

𝑣 ∈ 𝐻1
𝑝𝑒𝑟(2); 𝑣|𝛾 ∈ 𝐻1(𝛾), ∀𝛾 ∈ 𝒢 and ∫2

𝑣 = 0
⎫⎪
⎬
⎪⎭

,

on which we introduce a new inner product

(𝑢, 𝑣)𝑍1,𝑝𝑒𝑟
𝛤1

(2) ≔ ∫2
𝛁𝑢 · 𝛁𝑣 + 𝑎 ∫

𝛤1

𝑢𝑠𝑣𝑠.

After slight modifications of the density result in section 2.2, we see that 𝐶1
𝑏 (ℝ2) ↪

𝑍1,𝑝𝑒𝑟
𝛤1

(2) incarnates a dense subset, which ensures that equation (3.1.7) holds also for
𝑣 ∈ 𝑍1,𝑝𝑒𝑟

𝛤1
(2). The proper PDE interpretation of the integral equation has already been

descibed in Theorem 1.1.
By the PDE of �̂�𝑘, it is immediate to see that 𝑣 = 0 is not a solution to the above

equation once there is a nonlinear arc in 𝒢, because on this arc the term (𝑥𝑘)𝑠𝑠 is not 0.
Moreover, we have uniqueness of weak solutions in 𝑍1,𝑝𝑒𝑟

𝛤1
(2) by the integral equation

(3.1.7).
With the convergence of 𝑤𝑘 as 𝛿 → 0 well-understood, we are able to discuss the

convergence of effective tensors 𝛴𝛿. Recalling the formula (𝑘, 𝑙 = 1, 2)

(𝛴𝛿)𝑘,𝑙 = ∫2
�̄�(x)(𝛁𝑤𝑘 + 𝑒𝑘) ⋅ 𝑒𝑙𝑑x

= ∫2
�̄�(x)𝛁�̃�𝑘(x) ⋅ 𝑒𝑙𝑑x

= ∫2
(�̃�𝑘)𝑥𝑙(x)𝑑x + (𝜎 − 1) ∫

𝑅𝛿

𝛁�̃�𝑘(x) · 𝑒𝑙𝑑x

= 1 + 𝑄,
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we then only have to discuss the convergence of 𝑄. Observe that

𝑄 ∼ 𝜎 ∫
𝑅𝛿

𝛁�̃�𝑘 ⋅ 𝑒𝑙𝑑x

= 𝜎 ∫
𝑅𝛿

(
(�̃�𝑘)𝑠

1 + 𝜏𝜅(𝑠)𝑇 + (�̃�𝑘)𝜏𝑛) ⋅ 𝑒𝑙𝑑x

= 𝜎
𝑙

∫
0

𝛿

∫
0

(�̃�𝑘)𝑠(𝑇 ⋅ 𝑒𝑙) + (�̃�𝑘)𝜏(𝑛 ⋅ 𝑒𝑙)(1 + 𝜏𝜅(𝑠))𝑑𝜏𝑑𝑠

= 𝜎
𝑙

∫
0

𝛿

∫
0

(�̃�𝑘)𝑠(𝑠, 0+)(𝑇 ⋅ 𝑒𝑙)𝑑𝜏𝑑𝑠 + 𝑜(1)

𝛿→0⟶ 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑇 ⋅ 𝑒𝑙)𝑑𝑠.

Here 𝑇 and 𝑛 are the unit tangent vector field and unit outer normal field induced by 𝛤1

defined in 𝑅𝛿 for small 𝛿 > 0, and we have used Lemma 2.9, transmission conditions
(2.1.7) and trace theorem. Therefore, we arrive at the limit 𝛴0 of 𝛴𝛿 as 𝛿 → 0, which is

(𝛴0)𝑘𝑙 = 𝛿𝑘𝑙 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑇 ⋅ 𝑒𝑙)𝑑𝑠

= 𝛿𝑘𝑙 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑥𝑙)𝑠𝑑𝑠.
(3.1.8)

Lemma 3.2: 𝛴0 is always positive definite.
Proof: We have

(𝛴0)𝑘𝑙 = 𝛿𝑘𝑙 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑥𝑙)𝑠𝑑𝑠

= 𝛿𝑘𝑙 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(�̄�𝑙)𝑠𝑑𝑠 − 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(�̂�𝑙)𝑠𝑑𝑠.
(3.1.9)

Replacing 𝑣 = �̂�𝑙 in equation (3.1.6), we obtain

∫2
𝛁�̂�𝑙 · 𝛁�̄�𝑘 + 𝑎 ∫

𝛤1

(�̄�𝑘)𝑠(�̂�𝑙)𝑠 = 0.

Inserting this into (3.1.9), we see

(𝛴0)𝑘𝑙 = 𝛿𝑘𝑙 − ∫2
(�̄�𝑘)𝑥𝑙 + ∫2

𝛁�̄�𝑘 ⋅ 𝛁�̄�𝑙 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(�̄�𝑙)𝑠

= ∫2
𝛁�̄�𝑘 ⋅ 𝛁�̄�𝑙 + 𝑎 ∫

𝛤1

(�̄�𝑘)𝑠(�̄�𝑙)𝑠.
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For 𝑢, 𝑣 ∈ 𝐻1
𝛤1

(2) (this space is quite akin to 𝑍1,𝑝𝑒𝑟
𝛤1

(2), which is discussed before), we
similarly define

((𝑢, 𝑣)) = ∫2
𝛁𝑢 ⋅ 𝛁𝑣 + 𝑎 ∫

𝛤1

𝑢𝑠𝑣𝑠,

and clearly ((⋅, ⋅)) defines a semi-inner-product on 𝐻1
𝛤1

(2), which induces a semi-norm
𝑝(𝑢) = √((𝑢, 𝑢)) ⩽ ‖𝑢‖𝐻1

𝛤1
(2). It is clear that 𝑡𝑟(𝛴0) > 0, and so to show that 𝛴0 is

positive definite, it suffices to show that det(𝛴0) > 0. By simple computations, we have

det(𝛴0) = ((�̄�1, �̄�1))((�̄�2, �̄�2)) − ((�̄�1, �̄�2))2

⩾ 0,
with equality holds if and only if for some 𝜆 ∈ ℝ, 𝑝(�̄�1 + 𝜆�̄�2) = 0, which forces
�̄�1 + 𝜆�̄�2 = some constant 𝐶 . If the equality holds, then we obtain

�̂�1 = −𝜆�̂�2 − 𝜆𝑥2 − 𝑥1 + 𝐶.

According to periodicity of �̂�1, we know by the above equation, �̂�1 should be discontin-
uous across 𝑥1 = 0, but �̄� is always constant 1 in a neighborhood of some point on this
line, and so by classical elliptic equation theories, �̂�1 should be continuous, which causes
a contradiction.

∎
Corollary 3.1: There are some 𝜇, 𝛿0 > 0 such that for all 0 < 𝛿 < 𝛿0, we have

1
𝜇 𝐼𝑑 ≺ 𝛴𝛿 ≺ 𝜇𝐼𝑑,

where two symmetric matrices 𝐴 ≺ 𝐵 if 𝐵 − 𝐴 is positive definite.
With the tensor family {𝛴𝛿} uniformly strictly elliptic, we clearly obtain energy es-

timate

∫
𝛺

|𝛁𝑢𝛿,0|2 ≲𝜇,𝛺 ∫
𝛺

𝑓 2. (3.1.10)

Therefore, we see after passage to a subsequence of 𝛿 → 0, 𝑢𝛿,0 converges weakly to some
𝑢0,0 in 𝐻1(𝛺), and because 𝛴𝛿 → 𝛴0, as 𝛿 → 0, we see 𝑢0,0 should satisfy

⎧⎪
⎨
⎪⎩

−𝛁 ⋅ (𝛴0𝛁𝑢0,0)(x) = 𝑓(x), x ∈ 𝛺,

𝑢0,0(x) = 0, x ∈ ∂𝛺.
(3.1.11)

This then gives the effective model obtained through method I.
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3.1.2 Method II: homogenization of EBCs

The proof is inspired by Tartar’s Energy Method [37]. We consider 𝛤1 as a pattern
on a period as we mentioned in the introduction, and at scale 𝜖 > 0 and in the (𝑖, 𝑗)𝑇 -th
cell we denote by 𝛤 𝑖,𝑗

𝜖 the copy of 𝜖𝛤1 in it. It was shown in the Preliminaries that for
each 1/𝜖 = 𝑁 ∈ ℕ+, after sending 𝛿 → 0, 𝑢 = (𝑢0,𝜖) satisfies (even if there are interior
boundaries intersecting the outer boundary)

∫
𝛺

𝛁𝑢 ⋅ 𝛁𝜓𝑑x + 𝑎
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝑢𝑠𝜓𝑠𝑑𝑠 = ∫
𝛺

𝑓𝜓𝑑x, (3.1.12)

for every 𝜓 ∈ 𝐶∞
0 (𝛺). In fact, if the pattern is regular, by the density result, 𝜓 can be

chosen to be 𝐻1,0
∪𝑖,𝑗𝛤 𝑖,𝑗

𝜖
(𝛺) functions with compact support in 𝛺. Moreover, regardless of

the regularity of the pattern, we have an energy estimate

∫
𝛺

|𝛁𝑢|2𝑑x + 𝑎
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝑢2
𝑠𝑑𝑠 ≲𝛺 ∫

𝛺

𝑓 2𝑑x. (3.1.13)

Let H1(𝛺) ≔ (𝐻1(𝛺))2 with “(⋅)2” understood as Banach space product. For 𝑔 =
(𝑔1, 𝑔2) ∈ H1(𝛺), we have by trace theorem, on each 𝛤 𝑖,𝑗

𝜖 , 𝑔 has a unique restriction to
𝐿2(𝛤 𝑖,𝑗

𝜖 ), and

∫
𝛤 𝑖,𝑗

𝜖

|𝑔|2𝑑𝑠 ⩽ 𝐶
⎛
⎜
⎜
⎜
⎝

𝜖 ∫
𝑅𝜖,𝑖,𝑗

𝛿

|𝐷𝑔|2𝑑x + 1
𝜖 ∫

𝑅𝜖,𝑖,𝑗
𝛿

|𝑔|2
⎞
⎟
⎟
⎟
⎠

,

where 𝐶 > 0 might be dependent of 𝛿 > 0 but is independent of 𝜖 > 0, and 𝑅𝜖,𝑖,𝑗
𝛿 is a

copy of 𝜖𝑅𝛿 accessory to 𝛤 𝑖,𝑗
𝜖 . Summing up the above inequality over all index (𝑖, 𝑗) of

cells, we obtain
𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

|𝑔|2𝑑𝑠 ≲ 𝜖 ∫
𝛺

|𝐷𝑔|2𝑑x + 1
𝜖 ∫

𝛺

|𝑔|2𝑑x,

and by dividing both sides by 𝑁 , we see

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

|𝑔|2𝑑𝑠 ⩽ 𝐶 ‖𝑔‖
2
H1(𝛺) , (3.1.14)

with 𝐶 > 0 independent of 𝜖 > 0. The above discussions lead to the following conse-
quence.
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Lemma 3.3: For each 𝑔 ∈ H1(𝛺), the following family of linear functionals

𝑈𝑁 (𝑔) ≔ ∫
𝛺

𝛁𝑢 ⋅ 𝑔𝑑𝑥𝑑𝑦 + 𝑎
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝑢𝑠 (𝑔 ⋅ 𝑇 ) 𝑑𝑠

is uniformly bounded in (H1(𝛺))
∗.

Therefore, by Banach-Alaoglu Theorem, after passage to a subsequence of 𝑁 → ∞,
we know that 𝑈𝑁 ∗-weakly converges to some 𝑈∞ in (H1(𝛺))

∗. On the other hand, by
energy estimate, we know that 𝑢0,𝜖 is uniformly bounded in 𝐻1

0 (𝛺), and thus after passage
to a subsequence of 𝜖 = 1/𝑁 → 0, 𝑢0,𝜖 will weakly converge to some 𝑢∗ in 𝐻1

0 (𝛺). It
is natural to ask whether 𝑢∗ and 𝑢0,0 are the same. To this end, one needs to find out the
integral representation of 𝑈∞ in terms of 𝑢∗.

To derive the true effective model, one needs to be aware that, although the road
width 𝛿 > 0 already sent to 0 and heterogeneity replaced by boundary conditions, the
process of homogenization continues to be the same. Looking back to Method I, we find
that the effective corrector �̂�𝑘 should be useful. We then follow the way of classical
homogenization, and define an auxiliary function

𝑤𝜖
𝑘(x) ≔ 𝑥𝑘 + 𝜖�̂�𝑘(𝜖−1x).

By the equation (3.1.7) that �̂�𝑘 satisfies, we have that for all 𝜓 ∈ 𝐶∞
0 (𝛺),

∫
𝛺

𝛁𝑤𝜖
𝑘 · 𝛁𝜓𝑑x + 𝑎

𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

(𝑤𝜖
𝑘)𝑠𝜓𝑠𝑑𝑠 = 0. (3.1.15)

Replacing 𝜓 by 𝜓𝑤𝜖
𝑘 in (3.1.12) and by 𝜓𝑢0,𝜖 (𝑢 = 𝑢0,𝜖 if the symbols are clearly under-

stood) in (3.1.15), and combining the two equations, we obtain

∫
𝛺

𝛁𝑢⋅𝛁𝜓𝑤𝜖
𝑘𝑑x−∫

𝛺

𝛁𝑤𝜖
𝑘⋅𝛁𝜓𝑢𝑑x+ 𝑎

𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁

⎡
⎢
⎢
⎢
⎣

∫
𝛤 𝑖,𝑗

𝜖

𝑢𝑠𝜓𝑠𝑤𝜖
𝑘𝑑𝑠 − ∫

𝛤 𝑖,𝑗
𝜖

(𝑤𝜖
𝑘)𝑠 𝜓𝑠𝑢𝑑𝑠

⎤
⎥
⎥
⎥
⎦

= ∫
𝛺

𝑓𝑤𝜖
𝑘𝜓𝑑x.

(3.1.16)
With the notations defined before, we have

𝐿𝐻𝑆 = 𝑈𝑁 (𝛁𝜓𝑥𝑘) + 𝜖𝑈𝑁 (𝛁𝜓�̂�𝑘(𝜖−1⋅)) − ∫
𝛺

𝛁𝑤𝜖
𝑘 ⋅ 𝛁𝜓𝑢𝑑x − 𝑎

𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

(𝑤𝜖
𝑘)𝑠 𝜓𝑠𝑢𝑑𝑠

≕ 𝑈𝑁 (𝛁𝜓𝑥𝑘) + 𝐼 − 𝐼𝐼 − 𝐼𝐼𝐼.

Recalling that 𝑈𝑁
∗

⇀ 𝑈∞ in (H1(𝛺))∗, 𝑢 converges strongly to 𝑢∗ in 𝐿2(𝛺), and 𝛁𝑤𝜖
𝑘
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converges weakly to 𝑒𝑘 in 𝐿2(𝛺) as 𝑁 → ∞, we immediately obtain that as 𝜖 → 0,
• 𝑈𝑁 (𝛁𝜓𝑥𝑘) ⟶ 𝑈∞(𝛁𝜓𝑥𝑘);
• 𝐼𝐼 ⟶ ∫𝛺 𝑢∗𝜓𝑥𝑘 .

Moreover, by uniform boundedness of 𝑈𝑁 , we have

𝐼 ⩽ 𝜖 ‖𝑈𝑁‖(H1(𝛺))∗ ‖𝛁𝜓‖𝐿∞(𝛺) ‖�̂�𝑘‖𝑍1,𝑝𝑒𝑟
𝛤1

(2)

≲ 𝜖 ‖𝜓‖𝐶1(𝛺) ‖�̂�𝑘‖𝑍1,𝑝𝑒𝑟
𝛤1

(2) .

It then suffices to consider 𝐼𝐼𝐼 , but we have

𝐼𝐼𝐼 = 𝑎
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

(𝑤𝜖
𝑘)𝑠 𝜓𝑠𝑢𝑑𝑠

= 𝑎
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

(𝑤𝜖
𝑘)𝑠 𝑇 ⋅ 𝛁𝜓𝑢𝑑𝑠.

(3.1.17)

To find the limit of the above quantity, let us start with simple patterns. Suppose that
a 1-periodic pattern 𝒢 is composed of only one arc 𝛾 of length 𝑙 > 0 in each cell. To
specify the scaling relationship, we assume that the arc in [0, 1]2 is reparametrized by
𝛾0,0

1 ∶ [0, 𝑙] → [0, 1]2 by arc-length. If a copy is in [𝑖, 𝑖 + 1] × [𝑗, 𝑗 + 1], then it can also be
reparametrized by arc-length by 𝛾0,0

1 + (𝑖, 𝑗)𝑇 . At scale 𝜖 > 0, the copy 𝜖𝛾 in the (𝑖, 𝑗)𝑇 -th
cell can still be reparametrized by 𝛾 𝑖,𝑗

𝜖 (⋅) = 𝜖𝛾 𝑖,𝑗
1 (𝜖−1⋅) by arc-length. Notice that

𝑤𝜖
𝑘(𝛾 𝑖,𝑗

𝜖 (𝑠)) = 𝜖�̄�𝑘(𝜖−1𝛾 𝑖,𝑗
𝜖 (𝑠)) = 𝜖�̄�𝑘(𝛾0,0

1 (𝜖−1𝑠)), 𝑠 ∈ [0, 𝜖𝑙],

and thus we have

(𝑤𝜖
𝑘(𝛾 𝑖,𝑗

𝜖 (⋅)))𝑠
(𝑠) = (�̄�𝑘(𝛾0,0

1 (⋅)))𝑠
(𝜖−1𝑠).

Moreover, on 𝛤 𝑖,𝑗
𝜖 , we have the unit tangent field 𝑇(𝜖,𝑖,𝑗)(𝑠) = 𝑇(1,0,0)(𝜖−1𝑠), 𝑠 ∈ [0, 𝜖𝑙].

Therefore, by the above discussions, the sum (3.1.17) can be formally understood as

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝐹 (𝜖−1𝑠) ⋅ �⃗�𝜖(𝛾 𝑖,𝑗
𝜖 (𝑠))𝑑𝑠,

where 𝐹 is (�̄�𝑘)𝑠𝑇 , and �⃗�𝜖 is a weakly convergent sequence in H1(𝛺) with support of
its elements contained in a compact subset of 𝛺. The case for a general pattern is simply
a sum like this over all arcs. The following lemmas focus on the simple case that 𝒢 is
composed of only one arc, and vector-valued functions replaced by scalar-valued ones.
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Lemma 3.4: Let 𝐺𝜖 ∈ 𝐻1
0 (𝛺) be weakly convergent to 𝐺0 in 𝐻1

0 (𝛺). Then, we have

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝐺𝜖(𝛾 𝑖,𝑗
𝜖 (𝑠))𝑑𝑠 𝑁→∞⟶ 𝑙 ∫

𝛺

𝐺0(x)𝑑x.

Proof: Let 𝐾 ∈ ℕ+ large, and we consider the uniform partition of [0, 𝑙] by mesh 𝑙/𝐾 .
Let 𝑞𝑘 = 𝛾0,0

1 (𝑙𝑘/𝐾) for 𝑘 = 0, ⋯ , 𝐾 . When 𝐾 is large, then because 𝛾 is 𝐶2, each arc
⌢𝑞𝑘𝑞𝑘+1 can be written as the graph of function 𝑔𝑘( ̄𝑠) on the linear segment 𝑞𝑘𝑞𝑘+1, where

̄𝑠 ∈ 𝑞𝑘𝑞𝑘+1.
According to Lemma 2.3, we know that enduring a small error 𝑜𝐾 (1), the integral of

𝐺𝜖 on the arc
⌢𝑞𝑘𝑞𝑘+1 can be replaced by that on the linear segment 𝑞𝑘𝑞𝑘+1. After proper

translation (Lemma 2.1), rotation (Lemma 2.2) and rescaling (Lemma 2.4), we only have
to consider

∑𝐾−1
𝑘=0 |𝑞𝑘 − 𝑞𝑘+1|

𝑁

𝐿𝑁−1

∑
𝑗=−𝐿𝑁 ∫

ℝ

𝐺𝜖(𝑥, 𝑗/𝑁)𝑑𝑥.

But ∫ℝ 𝐺𝜖(𝑥, 𝑦)𝑑𝑥’s are uniformly 𝐶1/2
0 (ℝ) functions in 𝑦, and so we arrive at

𝐾−1

∑
𝑘=0

|𝑞𝑘 − 𝑞𝑘+1| ∫
𝛺

𝐺𝜖(x)𝑑x,

which converges to
𝐾−1

∑
𝑘=0

|𝑞𝑘 − 𝑞𝑘+1| ∫
𝛺

𝐺0(x)𝑑x,

by strong convergence of 𝐺𝜖 in 𝐿2(𝛺) as 𝜖 → 0. Because 𝛾 is rectifiable, we know that as
𝐾 → ∞,

𝐾−1

∑
𝑘=0

|𝑞𝑘 − 𝑞𝑘+1| ⟶ 𝑙.

∎
Corollary 3.2: Let 𝜙 be a step function on 𝛾 , then we have

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝜙(𝜖−1𝑠)𝐺𝜖(𝛾 𝑖,𝑗
𝜖 (𝑠))𝑑𝑠 𝑁→∞⟶ ∫

𝛾

𝜙(𝑠)𝑑𝑠 ⋅ ∫
𝛺

𝐺0(x)𝑑x.

Lemma 3.5: We have the following estimate
|
|
|
||

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝜙(𝜖−1𝑠)𝐺𝜖(𝛾 𝑖,𝑗
𝜖 (𝑠))𝑑𝑠

|
|
|
||

⩽ 𝐶𝐿 ‖𝐺𝜖‖𝐻1
0 (𝛺) ‖𝜙‖𝐿2(𝛾) .
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Proof: By Cauchy-Schwartz, we have
|
|
|
|
||

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝜙(𝜖−1𝑠)𝐺𝜖𝑑𝑠

|
|
|
|
||

⩽
⎛
⎜
⎜
⎜
⎝

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝐺2
𝜖 𝑑𝑠

⎞
⎟
⎟
⎟
⎠

1/2 ⎛
⎜
⎜
⎜
⎝

1
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝜙2(𝜖−1𝑠)𝑑𝑠
⎞
⎟
⎟
⎟
⎠

1/2

(3.1.14)
⩽ 𝐶 ‖𝐺𝜖‖𝐻1

0 (𝛺)

⎛
⎜
⎜
⎝

𝜖
𝑁 × (𝐿𝑁)2

∫
𝛾

𝜙2(𝑠)𝑑𝑠
⎞
⎟
⎟
⎠

1/2

⩽ 𝐶𝐿 ‖𝐺𝜖‖𝐻1
0 (𝛺) ⋅

⎛
⎜
⎜
⎝
∫
𝛾

𝜙2(𝑠)𝑑𝑠
⎞
⎟
⎟
⎠

1/2

.

∎
Corollary 3.3: Corollary 3.2 can be extended to the case that 𝜙 ∈ 𝐿2(𝛾). Moreover,
because (�̄�𝑘)𝑠𝑇 is clearly 𝐿2(𝛾), the convergence of 𝐼𝐼𝐼 is assured.

With these lemmas at hand, we obtain

𝐼𝐼𝐼 = 𝑎
𝑁

𝐿𝑁−1

∑
𝑖,𝑗=−𝐿𝑁 ∫

𝛤 𝑖,𝑗
𝜖

𝐹 (𝜖−1⋅) ⋅ �⃗�𝑑𝑠

𝜖→0⟶ 𝑎 ∫
𝛤1

𝐹 𝑑𝑠 ⋅ ∫
𝛺

�⃗�0𝑑x

= 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠𝑇 𝑑𝑠 ⋅ ∫
𝛺

𝛁𝜓𝑢∗𝑑x

= 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑥1, 𝑥2)𝑇
𝑠 𝑑𝑠 ⋅ ∫

𝛺

𝛁𝜓𝑢∗𝑑x.

Collecting all the terms after sending 𝜖 → 0, we obtain an equation

𝑈∞(𝛁𝜓𝑥𝑘) − ∫
𝛺

𝑢∗𝜓𝑥𝑘 − 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑥1, 𝑥2)𝑇
𝑠 𝑑𝑠 ⋅ ∫

𝛺

𝛁𝜓𝑢∗𝑑x = ∫
𝛺

𝑓𝜓𝑥𝑘𝑑x. (3.1.18)

Recalling the integral equation (3.1.12), we know that

𝐿𝐻𝑆 = 𝑈∞ (𝛁(𝜓𝑥𝑘)) = 𝑈∞(𝛁𝜓𝑥𝑘) + 𝑈∞(𝑒𝑘𝜓),

which, combining with (3.1.18), provide equality

𝑈∞(𝑒𝑘𝜓) = ∫
𝛺

(𝑢∗)𝑥𝑘𝜓 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑥1, 𝑥2)𝑇
𝑠 𝑑𝑠 ⋅ ∫

𝛺

𝜓𝛁𝑢∗𝑑x = 0, 𝑘 = 1, 2.

Replacing 𝜓 by 𝜂𝑥1 if 𝑘 = 1 and 𝜂𝑥2 if 𝑘 = 2 for some 𝜂 ∈ 𝐶∞
0 (𝛺), and summing up over
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𝑘 = 1, 2, we see

∫
𝛺

𝑓𝜂𝑑x = 𝑈∞(𝛁𝜂) = ∫
𝛺

𝛁𝑢∗ ⋅ (𝛴0𝛁𝜂)𝑑x.

But the solution is unique, and so 𝑢∗ = 𝑢0,0.

3.2 Analysis on the Trace of the Effective Diffusion Tensor

3.2.1 Optimization and Balance

One interesting question at this stage is that, is there a proper way to compare the
efficiencies between different patterns? It is very natural to compare two effective diffusion
tensors 𝛴0 and 𝛴′

0 by considering whether

𝛴0 ≽ 𝛴′
0.

However, this straight-forward method is not very practical in use, and so we turn to con-
sider the trace of the effective diffusion tensors ℰ ≔ 𝑡𝑟 (𝛴0) . This quantity measures
the total effect of the enhancement of the given materials and it is, according to Linear
Algebra, certainly a weaker form of comparison by semi-positive-definiteness.

By classical homogenization [38], we have the estimate
1

∫2 1
�̄�

𝐼𝑑 ≼ 𝛴𝛿 ≼ ∫2
�̄�𝐼𝑑,

which, by sending 𝛿 → 0, gives that

𝐼𝑑 ≼ 𝛴0 ≼ (1 + 𝑎𝑙)𝐼𝑑,

where 𝑙 is the total length of 𝛤1 in one cell at scale 1. The above inequality give rises to

2 ⩽ ℰ ⩽ 2 + 2𝑎𝑙,

and thereby we ask that when could the right-hand-side inequality replaced by equality?

In fact, the right hand side of the above inequality can be modified: if we take a look
at each component of 𝛴0, we have for 𝑘, 𝑙 = 1, 2,

(𝛴0)𝑘𝑙 = 𝛿𝑘𝑙 + 𝑎 ∫
𝛤1

(�̄�𝑘)𝑠(𝑥𝑙)𝑠𝑑𝑠

= 𝛿𝑘𝑙 + 𝑎 ∫
𝛤1

(𝑥𝑘)𝑠(𝑥𝑙)𝑠𝑑𝑠 + 𝑎 ∫
𝛤1

(�̂�𝑘)𝑠(𝑥𝑙)𝑠𝑑𝑠,
(3.2.1)
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where by equation (3.1.7),

𝑎 ∫
𝛤1

(�̂�𝑘)𝑠(𝑥𝑙)𝑠𝑑𝑠 = − ∫2
𝛁�̂�𝑘 ⋅ 𝛁�̂�𝑙 − 𝑎 ∫

𝛤1

(�̂�𝑘)𝑠(�̂�𝑙)𝑠. (3.2.2)

Therefore, we have

(𝛴0)𝑘𝑘 = 1 + 𝑎 ∫
𝛤1

(𝑥𝑘)2
𝑠 − ∫2 |𝛁�̂�𝑘|

2 − 𝑎 ∫
𝛤1

(�̂�𝑘)2
𝑠 ,

which implies that

ℰ = 2 + 𝑎 ∫
𝛤1

((𝑥1)2
𝑠 + (𝑥2)2

𝑠) − ∫2 (|𝛁�̂�1|
2 + |𝛁�̂�2|

2
) − 𝑎 ∫

𝛤1

((�̂�1)2
𝑠 + (�̂�2)2

𝑠)

= 2 + 𝑎𝑙 − (𝑒𝑛𝑒𝑟𝑔𝑦(�̂�1) + 𝑒𝑛𝑒𝑟𝑔𝑦(�̂�2))

⩽ 2 + 𝑎𝑙.

(3.2.3)

This inequality also ushers us to the maximization of trace of effective diffusion tensors:
to maximize ℰ , it suffices to minimize the sum of energies of �̂�1 and �̂�2, which means
that we should find patterns that render them zero. Indeed, the balanced patterns defined
before exactly fulfill this property.

proof of Theorem 1.2: By density result, we know that if 𝒢 is regular when considered
as a 1-periodic pattern on ℝ2, each of the corresponding effective corrector equations for
𝑘 = 1, 2 admits a unique weak solution in 𝑍1,𝑝𝑒𝑟

𝛤1
(2). Thus, one only have to consider the

equivalent conditions that ensures �̂�1 ≡ �̂�2 ≡ 0 to be solutions. By the boundary condi-
tions described in Theorem 1.1, we know that the three conditions proposed in Theorem
1.2 are evidently both sufficient and necessary. ∎

3.2.2 Several Examples of Balanced Patterns

The classification of balanced patterns will be a distinct subject, and here we only list
some examples. It is certain that the four cases do not cover all possible ones (see Figure
3.1–3.4).

3.2.3 As 𝑎 → ∞

This subsection mainly discusses the asymptotics of 𝑡𝑟(𝛴0) as 𝑎 → ∞. Before ev-
erything starts, we briefly prove the asymptotics of the trace as 𝑎 → 0+. According to
equation (3.2.1), we only have to evaluate the term −𝑎 ∫𝛤1

(�̂�𝑘)𝑠(𝑥𝑘)𝑠. By an integration

44



CHAPTER 3 HOMOGENIZATION OF ENHANCING THIN LAYERS

Figure 3.1 [Lines] Straight lines that take rational slopes are akin to this picture

(a) Viewed in one cell. (b) Viewed in a nine-palace.

Figure 3.2 [Hexagons] Hexagons with each end point connecting to three arcs can be modified
to be balanced
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(a) Viewed in one cell.
(b) Viewed in a nine-palace.

Figure 3.3 [Others] Balanced pattern composed of Pentagons and Hexagons

(a) Viewed in one cell. (b) Viewed in a nine-palace.

Figure 3.4 [Others] Balanced pattern composed of Parallelograms, Pentagons and Hexagons
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by parts, we obtain

−𝑎 ∫
𝛤1

(�̂�𝑘)𝑠(𝑥𝑘)𝑠 = 𝑎 ∫
𝛤1

�̂�𝑘(𝑥𝑘)𝑠𝑠 + 𝑂
( ∑

𝑉 is a node of 𝒢
𝑎|�̂�𝑘(𝑉 )|

)

≕ 𝐼 + 𝐼𝐼.
Observe that by trace theorem

|𝐼| ⩽ 𝑎
⎛
⎜
⎜
⎜
⎝

∫
𝛤1

�̂�2
𝑘

⎞
⎟
⎟
⎟
⎠

1/2 ⎛
⎜
⎜
⎜
⎝

∫
𝛤1

(𝑥𝑘)𝑠𝑠

⎞
⎟
⎟
⎟
⎠

1/2

≲ 𝑎
⎛
⎜
⎜
⎝

∫2
|𝛁�̂�𝑘|2

⎞
⎟
⎟
⎠

1/2

,

and similarly

|𝐼𝐼| ≲ 𝑎
⎛
⎜
⎜
⎜
⎝

∫2
|𝛁�̂�𝑘|2 + 𝑎 ∫

𝛤1

(�̂�𝑘)2
𝑠

⎞
⎟
⎟
⎟
⎠

1/2

.

Combining these two, (3.2.2) and (3.2.3), we have

2 + 𝑎𝑙 − 𝑂(𝑎2) ⩽ 𝑡𝑟(𝛴0) ⩽ 2 + 𝑎𝑙.

This estimate shows that when 𝑎 is very small, the major contribution of different patterns
get close. In order to see the differences among different patterns, we attempt to send
𝑎 → ∞.

3.2.3.1 Some Function Spaces

Given a pattern 𝒢 on a flat torus and a proper periodic extension of it on a plane
ℝ2, we see that probably a curve 𝛾 ∈ 𝒢 crosses the boundary ∂2 of a period 2 =
(0, 1)2. This case is well exhibited in Figure 1.1, where 𝛾1 and “𝛾6” are considered as one
single curve. However, it is clear to see that if one translates the coordinate system of
ℝ2, 𝛾1 and “𝛾6” combined will be contained in the unit cell (see Figure 3.5). In previous
discussions, we simply ignored the influence caused by different translations of coordinate
system of ℝ2 on the “real” pattern displayed in the unit cell2, but in this subsection, we
will carefully point out the nuances because this is significant in the establishment of the
desired estimates.

We reuse the original definition of 𝛤1 in the introduction, where 𝛤1 is exactly the
subset of 𝕋 2 comprising curves in 𝒢. We now differentiate 𝛤1 and 𝛤 #

1 , where the latter is
the restriction to one period 2 of the periodic extension of 𝛤1 following the extension
of 𝒢. Be aware that the latter is dependent on the translation of coordinate system on ℝ2,
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Figure 3.5 translation of coordinate system in Figure 1.1 makes 𝛾1 to avoid crossing the boundary
of the unit cell.

while the prior is not. Collecting the maximal regular components of 𝛤 #
1 in2 regardless

of the periodicity, we obtain a new pattern 𝒢#. Observing that in some cases (such as the
linear segment 𝐿3 in Figure 3.2(a)) there are arcs included by the boundary ∂2, we delete
one of the arsing two copies in defining 𝛤 #

1 .
Definition 3.1: We define

ℳ1(𝛤 #
1 ) ≔

⎧⎪
⎨
⎪⎩

𝑢 is measurable on 𝛤 #
1 ;

𝑢|𝛾 ∈ 𝐻1(𝛾), ∀𝛾 ∈ 𝒢#, and ∀𝑉 ∈ 2,

𝑢|𝛾 (𝑉 ) = 𝑢|𝛾′(𝑉 ) for any 𝛾, 𝛾′ ∈ 𝒢# joint at 𝑉 .

⎫⎪
⎬
⎪⎭

,

and

ℳ1
𝑝𝑒𝑟(𝛤1) ≔

⎧⎪
⎨
⎪⎩

𝑢 is measurable on 𝛤1;
𝑢|𝛾 ∈ 𝐻1(𝛾), ∀𝛾 ∈ 𝒢, and ∀𝑉 ∈ 𝕋 2,

𝑢|𝛾 (𝑉 ) = 𝑢|𝛾′(𝑉 ) for any 𝛾, 𝛾′ ∈ 𝒢 joint at 𝑉 .

⎫⎪
⎬
⎪⎭

.

We endow these two linear spaces with the following inner products

(𝑢, 𝑣)ℳ1(𝛤 #
1 ) = ∫

𝛤 #
1

𝑢𝑣 + 𝑢𝑠𝑣𝑠, 𝑢, 𝑣 ∈ ℳ1(𝛤 #
1 ),

and

(𝑢, 𝑣)ℳ1
𝑝𝑒𝑟(𝛤1) = ∫

𝛤1

𝑢𝑣 + 𝑢𝑠𝑣𝑠, 𝑢, 𝑣 ∈ ℳ1
𝑝𝑒𝑟(𝛤1)

respectively, which evidently makes them Hilbert. When the meaning is clear, we simply
use ℳ1 and ℳ1

𝑝𝑒𝑟 to denote the above two spaces.
Proposition 3.1: There is a canonical inclusion ℳ1

𝑝𝑒𝑟 ↪ ℳ1 that preserves the inner
product. Moreover, ℳ1

𝑝𝑒𝑟 is a closed subspace.
Proof: We may clearly identify 𝛤1 with 𝛤 #

1 geometrically in an essential way, that is,
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there are isometries (obtained from the periodic extension of 𝒢) from each regular com-
ponents of 𝛤 #

1 to those of 𝛤1 with finitely many points deleted (in a translated coordinate
system on ℝ2, 𝛤 #

1 changes and the deleted points on 𝛤1 may vary). These isometries make
elements in ℳ1

𝑝𝑒𝑟 functions on 𝛤 #
1 through composition in a piecewise manner. The con-

ditions in the definition of ℳ1
𝑝𝑒𝑟 ensure that such functions must be in ℳ1. The rest are

routine proofs. ∎
We present a Poincaré Inequality on bounded connected patterns. Here “bounded”

refers to the boundedness of the length of all the arcs involved in the pattern and “con-
nected” refers that given any two points on the pattern there are arcs composing a piecewise
𝐶1 curve in ℝ2 connecting them.
Lemma 3.6: (Poincaré Inequality on Bounded Connected Patterns) Let 𝒢 be a
bounded connected pattern, and 𝛤 the union of all arcs. We have

⎛
⎜
⎜
⎝
∫
𝛤

(𝑢− < 𝑢 >)2
⎞
⎟
⎟
⎠

1/2

≲
⎛
⎜
⎜
⎝
∫
𝛤

𝑢2
𝑠
⎞
⎟
⎟
⎠

1/2

, ∀𝑢 ∈ ℳ1, (3.2.4)

where < 𝑢 >= ∫𝛤 𝑢/𝑙 with 𝑙 the total length of arcs in 𝒢.
Proof: For any two points 𝑥, 𝑦 on the pattern, we have, by connectedness, 𝛾1, ⋯ , 𝛾𝑘 ∈
𝒢, 𝑘 ∈ N+ such that 𝑥 is contained in 𝛾1 and 𝑦 contained in 𝛾𝑘, and each 𝛾𝑖 connects to 𝛾𝑖+1
for all 𝑖 = 1, ⋯ , 𝑘−1 forming a piecewise 𝐶1 curve in ℝ2. Denoting by 𝑉𝑖, 𝑖 = 1, ⋯ , 𝑘−1
the intersection points of these curves between 𝑥 and 𝑦, we have

|𝑢(𝑥) − 𝑢(𝑦)| ⩽
𝑘−2

∑
𝑖=1

|𝑢(𝑉𝑖) − 𝑢(𝑉𝑖+1)| + |𝑢(𝑥) − 𝑢(𝑉1)| + |𝑢(𝑉𝑘−1) − 𝑢(𝑦)|

⩽
𝑘−2

∑
𝑖=1 ∫

𝛾𝑖+1

|𝑢𝑠| + ∫
𝛾1

|𝑢𝑠| + ∫
𝛾𝑘

|𝑢𝑠|

⩽ 𝑙1/2
⎛
⎜
⎜
⎝
∫
𝛤

𝑢2
𝑠

⎞
⎟
⎟
⎠

1/2

.

Now, we have

∫
𝛤

(𝑢− < 𝑢 >)2 = ∫
𝛤

(
∫𝛤 |𝑢(𝑥) − 𝑢(𝑦)|𝑑𝑦

𝑙 )

2

𝑑𝑥 ⩽ 𝑙2
∫
𝛤

𝑢2
𝑠 .

∎
We wish to consider the semi-inner-product

< 𝑢, 𝑣 >ℳ1= ∫
𝛤1

𝑢𝑠𝑣𝑠, 𝑢, 𝑣 ∈ ℳ1,
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through which we may define a semi-norm

𝑝(𝑢) = √< 𝑢, 𝑢 >ℳ1 .

We define

𝐾1 = {𝑢 ∈ ℳ1; 𝑝(𝑢) = 0} , 𝐾1
𝑝𝑒𝑟 = 𝐾1 ∩ ℳ1

𝑝𝑒𝑟.

According to Lemma 3.6, we know that functions in 𝐾1 take constant values on each
connected components of 𝛤1, and because the number of arcs is finite in each cell,
dim 𝐾1

𝑝𝑒𝑟 ⩽ dim 𝐾1 < ∞. We further define

𝑀1 = (𝐾1)⟂, 𝑀1
𝑝𝑒𝑟 = (𝐾1)⟂ ∩ ℳ1

𝑝𝑒𝑟. (3.2.5)

Also by Poincaré Inequality, we know that the restrictions of “<, >ℳ1” to 𝑀1 and 𝑀1
𝑝𝑒𝑟

now are inner products and are equivalent to the original inner products. From now on,
we consider 𝑀1 and 𝑀1

𝑝𝑒𝑟 as Hilbert spaces with inner product “<,>”.

3.2.3.2 The Estimate

As in the case 𝑎 → 0+, we still evaluate the term −𝑎 ∫𝛤1
(�̂�𝑘)𝑠(𝑥𝑘)𝑠. We may assume

that (�̂�𝑘)𝑠 is not constant 0. Notice that �̂�𝑘 ∈ ℳ1
𝑝𝑒𝑟 and 𝑥𝑘 ∈ ℳ1. Let 𝑤 be the projection

of �̂�𝑘 into 𝑀1
𝑝𝑒𝑟, and 𝑧 the projection of 𝑥𝑘 into 𝑀1. Thus, we can rewrite

|∫𝛤1
(�̂�𝑘)𝑠(𝑥𝑘)𝑠|

(∫𝛤1
(�̂�𝑘)2

𝑠)
1/2 =

|∫𝛤1
𝑤𝑠𝑧𝑠|

(∫𝛤1
𝑤2

𝑠)
1/2 .

Let 𝑑#
𝑘 = 𝑑𝑖𝑠𝑡(𝑧, 𝑀1

𝑝𝑒𝑟), we obtain by elementary geometry

|∫𝛤1
𝑤𝑠𝑧𝑠|

(∫𝛤1
𝑤2

𝑠)
1/2 ⩽ (< 𝑧, 𝑧 > −(𝑑#

𝑘)2)
1/2 ,

and then

|
|
|
||
∫
𝛤1

(�̂�𝑘)𝑠(𝑥𝑘)𝑠

|
|
|
||

⩽
⎛
⎜
⎜
⎜
⎝

∫
𝛤1

(�̂�𝑘)2
𝑠

⎞
⎟
⎟
⎟
⎠

1/2 ⎛
⎜
⎜
⎜
⎝

∫
𝛤1

(𝑥𝑘)2
𝑠 − (𝑑#

𝑘)2
⎞
⎟
⎟
⎟
⎠

1/2

. (3.2.6)

According to equation (3.2.2), we have

∫
𝛤1

(�̂�𝑘)2
𝑠 ⩽

|
|
|
||
∫
𝛤1

(�̂�𝑘)𝑠(𝑥𝑘)𝑠

|
|
|
||
. (3.2.7)
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Inserting estimate (3.2.7) into (3.2.6), we obtain
|
|
|
||
∫
𝛤1

(�̂�𝑘)𝑠(𝑥𝑘)𝑠

|
|
|
||

⩽ ∫
𝛤1

(𝑥𝑘)2
𝑠 − (𝑑#

𝑘)2,

which shows that

(𝛴0)𝑘𝑘 ⩾ 1 + 𝑎(𝑑#
𝑘)2,

and hence

𝑡𝑟(𝛴0) ⩾ 2 + 𝑎 ((𝑑#
1 )2 + (𝑑#

2 )2) . (3.2.8)

Stopping here will not be enough because we find that in some cases, (𝑑#
1 )2 + (𝑑#

2 )2 could
be zero. Moreover, the translation of coordinate system also possibly change (𝑑#

1 )2+(𝑑#
2 )2,

and thus, to make a more intrinsic estimate, we take 𝑑2 to be the maximum of (𝑑#
1 )2 +(𝑑#

2 )2

over all translations of coordinate system.

3.2.4 Examples on Patterns with different 0 ⩽ 𝑑 ⩽ √𝑙

1. The trace of the effective diffusion tensor of balanced patterns is exactly 2 + 𝑎𝑙,
regardless of the translations of coordinate system;

2. There is a pattern having the corresponding 𝑑 = 0.

Figure 3.6 In the center of each cell there is a circle of radius 0.1; this is also considered as 𝛤 #
1

of Type 0

We start computing 𝑑 for the above six types of 𝛤 #
1 . It is clear that in type 0, ℳ1

51



CHAPTER 3 HOMOGENIZATION OF ENHANCING THIN LAYERS

(a) 𝛤 #
1 of Type 1 (b) 𝛤 #

1 of Type 2

Figure 3.7 Type 1 and 2 are similar, but have different effects on calculating 𝑑#
𝑘 for a given 𝑘 =

1, 2

(a) 𝛤 #
1 of Type 3 (b) 𝛤 #

1 of Type 4

(c) 𝛤 #
1 of Type 5

Figure 3.8 Type 3 and 5 have four connected components, while Type 4 has three.
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coincides with ℳ1
𝑝𝑒𝑟, and so the distance 𝑑#

𝑘 = 0 for all 𝑘 = 1, 2. In type 1 and 2,
the projections of 𝑥𝑘’s to 𝑀1 are contained in 𝑀1

𝑝𝑒𝑟, although, at this moment, 𝑥𝑘’s
are not in ℳ1

𝑝𝑒𝑟, which again forces 𝑑#
𝑘 = 0. Similar proof also holds for type 3,

4 and 5. It is not hard to see that 𝛤 #
1 under any translation of coordinate system of

ℝ2 can be classified topologically into one of the six types listed above, and 𝑑#
𝑘’s

remain constant in each class. In conclusion, 𝑑 should be 0;
3. There is a pattern having the corresponding 0 < 𝑑 < √𝑙:

Figure 3.9 In the center of each cell there is a circle of radius 0.1 and there is one linear segment
crossing the boundary of the unit cell and connecting the north and south pole of the
circle

In this case, 𝐾1 is exactly one dimensional and consists of constant functions only.
Observing that 𝑥2 = 𝑦± some constant 𝐶 can never be in 𝑀1

𝑝𝑒𝑟, we see 𝑑#
2 > 0, and

hence 𝑑 > 0. Moreover, the involved circle makes the pattern non-balanced, which
ensures that 𝑑 < √𝑙.

Theorem 3.1: From example 3., we see that if (in some translated coordinate system)
𝛤 #

1 is connected, and there is an arc of the pattern crossing ∂2, then we have 0 < 𝑑 ⩽ √𝑙
such that

2 + 𝑑2𝑎 ⩽ 𝑡𝑟(𝛴0) ⩽ 2 + 𝑙𝑎.
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